
ECML-PKDD, 2022

Contextualized Graph Embeddings for Adverse Drug
Event Detection

Ya Gao1, Shaoxiong Ji*1, Tongxuan Zhang2, Prayag Tiwari1, and Pekka Marttinen1

1Aalto University, Espoo 02150, Finland
2Tianjin Normal University, Tianjin 300387, China

Email: {ya.gao; shaoxiong.ji; prayag.tiwari; pekka.marttinen}@aalto.fi; txzhang@tjnu.edu.cn

Abstract

An adverse drug event (ADE) is defined as an adverse reaction resulting from improper drug
use, reported in various documents such as biomedical literature, drug reviews, and user posts
on social media. The recent advances in natural language processing techniques have facilitated
automated ADE detection from documents. However, the contextualized information and rela-
tions among text pieces are less explored. This paper investigates contextualized language models
and heterogeneous graph representations. It builds a contextualized graph embedding model for
adverse drug event detection. We employ different convolutional graph neural networks and pre-
trained contextualized embeddings as the building blocks. Experimental results show that our
methods can improve the performance by comparing recent ADE detection models, suggesting
that a text graph can capture causal relationships and dependency between different entities in a
document.
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1 Introduction
Adverse Drug Events (ADEs) are injuries resulting from medical intervention related to a drug [8]. A typical
way to detect ADEs is to conduct a clinical trial. However, there are many settings where a drug would be
used, and we cannot check all of them during the clinical trial. Besides, some ADEs have long latency, making
them hard to be discovered by an ordinary clinical trial [32]. Post-marketing drug safety surveillance, also
called pharmacovigilance, is conducted to solve these problems. Pharmacovigilance activities mostly depend
on Spontaneous Reporting Systems, which collect users’ voluntary ADE reports [20]. However, the number of
people willing to report their experiences through the official systems is negligible. Furthermore, these systems
are limited due to biased and incomplete reports.

Compared with reports using Spontaneous Reporting Systems, more people often talk about their adverse
reactions on social media platforms. Recent publications collect documents from social media such as Twit-
ter and Reddit to obtain more reliable data and detect ADEs automatically using Nature Language Processing
(NLP) techniques. The detection of ADEs can be seen as a text classification task or a sequence-labeling prob-
lem, where we need to identify documents including ADEs [9]. The early studies include lexicon-based and
rule-based methods [38, 31]. These methods focus on string-matching, which is less effective for social media
text and consumes many resources to build rules. Machine learning algorithms are also used to solve this task,
such as Conditional Random Fields (CRFs) [26] , Support Vector Machine (SVM) [4], Recurrent Neural Network
(RNNs) [5] and Convolutional Neural Networks (CNNs) [11]. These approaches can process text with manual
feature engineering or enable automated feature learning with deep learning methods, facilitating automated
ADE detection from biomedical text or social content. However, the existing approaches and models have
two limitations: (1) some works are limited in capturing the rich context information in the text. (2) some do
not fully consider the causal relationship and dependency between different entities in a document. Effective
text encoding should be considered for the ADE detection task to capture rich semantic and contextualized
information. Note that detecting causal relationships does not here refer to causal inference as in the field of
machine learning focusing on causality [27], but rather expressing or indicating the relationship between the
cause, e.g. a drug taken, and the respective individual’s adverse health outcome as reported in the text sample.
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Graphs are commonly used for different data representations because of their strong expressivity. Text data
can be represented by heterogeneous graphs, where different words, phrases, and documents are seen as nodes,
and their relations are shown using edges. Text graphs and graph neural networks are widely used in many
NLP applications for healthcare tasks such as sentiment classification and review rating [39, 22]. Graph Neural
Networks (GNNs) [36] can be applied to graph representation learning and capture the causal relationships
and dependency of objects, making them more suitable for representing text with adverse drug events. How-
ever, no existing studies on ADE detection employ graph representation and graph neural networks. Besides,
contextualized representations of text facilitate various NLP applications and boost the performance of NLP
systems with minimal architecture engineering. In the medical domain, contextualized embeddings with do-
main knowledge are also in need. Pretrained contextualized language embeddings have been applied to various
medical applications such as medical code assignment [12] and biomedical knowledge graph construction [13].

This paper presents a contextualized graph embedding model for ADE detection. We build contextualized
language embeddings to capture contextualized information. With a heterogeneous graph built to embody
word and document relations from the ADE corpus, we use graph neural networks to learn causal relations
between word and document nodes to improve adverse drug reaction detection. This paper deploys different
GNN-based models and pre-trained contextualized embeddings. The performance of these models is evalu-
ated and compared with state-of-the-art models on three public benchmarks for ADE detection. Our model
outperforms several strong ADE detection models in most cases. We also analyze the experiment results to
discuss some potential challenges and explore the potential for improving the ADE detection tasks. The code
will be made publicly available on acceptance.

Our contributions include the following folds.

• We develop a contextualized graph embedding model (CGEM) that introduces text graphs to capture the
cause-effect relation for drug adverse event detection.

• The CGEM model utilizes contextualized embeddings pre-trained in large-scale domain-specific cor-
pora for capturing context information, convolutional GNNs for text graph encoding, and an attention
classifier for ADE classification.

• Experimental results show our approach outperforms recent advanced ADE detection models in three
public datasets from the biomedical domain and social media.

2 Related Work
The rapid development of deep learning makes neural network-based approaches predominant in ADE detec-
tion. RNN can process sequence information and capture the sequential dependency, making it is suitable for
ADE detection from text. Many studies on the ADE detection task employ RNN-based models. Cocos et al. [5]
developed a Bidirectional Long Short-Term Memory (BiLSTM) network to label different parts of a sequence
for ADE detection. Dandala et al. [6] presented a pipeline-based system to recognize entities relevant to ADEs
using BiLSTM and CRF and then determine relations between different entities using BiLSTM and attention
network. Information from recognition of concepts and relations can benefit each other, enabling this joint
modeling technique to obtain more useful information during learning. However, inaccurate recognition in
the first step will affect the following steps, known as the error propagation issue. To address this issue, Wei
et al. [34] proposed a joint learning model which can recognize entities of ADE, the reason, and their rela-
tions simultaneously. In the recognition phase, the joint model employs CRF and BiLSTM. To achieve relation
classification, it uses CNN-RNN and SVM.

Some studies also developed models with other neural network architectures, such as capsule networks
and the self-attention mechanism. Zhang et al. [42] presented a model called Gated iterative capsule network
(GICN), which applies CNN to obtain the complete phrase information and extracts deep semantic informa-
tion using a capsule network with a gated iteration unit. This unit can remember contextual information by
clustering features. However, they did not consider the wights of different parts of a document. With at-
tention mechanisms, more critical parts of a document get higher weights. Kayesh et al. [16] proposed a
causality-driven neural network-based model which applies a multi-head self-attention mechanism to learn
word-to-word interactions. Ge et al. [10] employed Multi-Head Self-Attention in their model to distinguish
the importance of different words. Wunnava et al. [37] developed a dual-attention mechanism with BiLSTM to
capture both task-specific and semantic information in the sentence. However, they did not fully consider the
causal relationship between entities in a document.
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3 Methods

3.1 Overall Architecture
This paper defines ADE detection as a classification task. We develop the contextualized graph embedding
model as illustrated in Figure 1. There are three components of the model. (1) Graph Construction with Con-
textualized Embeddings. We construct a heterogeneous graph to represent words and documents in the whole
dataset, following TextGCN [39], and use pre-trained language models, specifically BERT [7] and its domain-
specific variants, to obtain the contextualized text representation. (2) Graph-based Text Encoding. To capture
neighborhood information in the heterogeneous graph, the feature matrix obtained from the embedding layer
and the adjacency matrix from the constructed graph are fed into graph encoders. The feature embeddings are
iteratively updated in the heterogeneous relational networks of words and documents. (3) ADE Classifica-
tion. We follow the BertGCN model [22] to fuse contextualized embedding and graph networks with a weight
coefficient to balance these two branches. Furthermore, we build an attentive classification layer to allow more
critical content to contribute more to predictions. Fig. 1 shows the overall model architecture. The details of
these components are introduced in the following sections.
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Figure 1: The illustration of the model architecture with contextualized graph embeddings for ADE
detection

3.2 Graph Construction
3.2.1 Heterogeneous Graph

We first represent text as a graph before feeding it to neural networks. Representing text in a heterogeneous
graph can provide different perspectives for text encoding and improve ADE detection. The process of graph
construction follows TextGCN [39]. Nodes in the graph represent documents and different words. The number
of nodes n equal to the number of documents nd plus the number of unique words nw in the whole dataset,
i.e., n = nd + nw. There are two types of edges, i.e., word-word and document-word edges. We use the term
frequency-inverse document frequency (TF-IDF) of one word in the document to represent the weight of a
document-word edge, while the weight of a word-word edge is based on positive point-wise mutual information
(PMI) of two words. We can represent the weight between the node i and the node j as:

Aij =


PMI(i, j), PMI > 0; i, j: words
TF-IDFij, i: document, j: word
1, i = j
0, otherwise

. (1)
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3.2.2 Contextualized Embeddings

We used three pre-trained contextualized language models to obtain embeddings for documents. They are all
BERT-based models but pre-trained with different strategies or corpora collected from different domains. The
pre-trained language embeddings include:

• RoBERTa [23]: a pre-trained model with masked language modeling (MLM) objective on English lan-
guage. In this paper, we used the base version.

• BioBERT [19]: a BERT-based model trained with biomedical corpora including PubMed abstracts and
PubMed Central full-text articles.

• ClinicalBERT [2]: another domain-specific BERT-based model which is trained on clinical notes from
the MIMIC-III database [14].

Given the dimension of embeddings denoted as d, the final output of contextualized text encoding are denoted
as Hdoc ∈Rnd×d . We then apply a zero matrix as the initialization of word nodes to get the feature matrix input
to GNN:

H(0) =
(

Hdoc
0

)
(2)

where H(0) ∈R(nd+nw)×d .

3.3 Graph-based Text Encoding
This section employs a graph-based model for text encoding and capturing complex heterogeneous relation-
ships. Graph neural networks are powerful models to mine and capture the relations and dependencies of
graph data. Specifically, we apply two graph neural networks, i.e., Graph Convolutional Network (GCN) [18]
and Graph Attention Network (GAT) [33], which are commonly used in different tasks. Graph convolution en-
codes the topological structure of the heterogeneous graph, enables label influence propagation, and achieves
effective modeling of ADE corpora. In this section, we introduce their principles.

GCN is a category of Convolutional Graph Neural Networks (ConvGNNs) models. It is a spectral-based
model which incorporates nodes’ feature information from their neighbors. It can be seen as a multilayer neu-
ral network limited to undirected graphs where the number of layers is fixed. Each layer has different weights
to better process cyclic mutual dependencies. GCN is the approximations and simplifications of Spectral CNN.
It approximates spectral graph convolutions using convolutional architecture to get a localized first-order rep-
resentation.

A graph G consists of nodes set V , and edge sets E. A is the adjacency matrix obtained from the step of
graph construction, and Â is its normalized form. D is the degree matrix, where Dij =

∑
j Aij . In the GCN

model, multiple layers are stacked to integrate information about higher-order neighborhoods. In the m-th
layer, the feature matrix is updated as:

H(m) = f (ÂH(m−1)W(m−1)), Â = D−
1
2 AD

1
2 , (3)

where H(m) ∈ R
n×dm ,and W(m−1) ∈ R

dm−1×dm is the weight matrix, H(0) is the output from contextualized
language models, and f (·) is an activation function.

Being similar to GCN, GAT is also a ConvGNNs model. However, it is spatial-based neural networks,
where node information is propagated within edges and graph convolutions are finally decided by the spatial
relation. It employs the message passing process and attention mechanism to learn relations between nodes.
Graph attention layers in GAT assign different attention scores to one node’s distant neighbors and prioritize
the importance of different types of nodes.

3.4 Classification Layers

The GNN-based text encoding produces hidden feature representations H ∈ Rn×dc . We propose to use an at-
tention mechanism (Eq. 4) to put more attention on nodes with more important information related to positive
or negative ADE classes, denoted as

s = softmax(waHT), (4)

where wa ∈ R
dc and s = (s1, s2, · · · , sn) ∈ R

n is the attention weight vector containing attention score of each
node. Attention scores from the attentive classification layer are different from the attention layer of GAT.
Here, attention scores measure which nodes are more important to the graph, while in the attention layer of
GAT, attention scores decide the importance of one node to the other node in the neighborhood. The weight
is assigned to feature matrix to obtained attentive hidden representation weighted by attention scores, i.e.,
Ha = [s1 ×h′1, s2 ×h′2, ..., sn ×h′n].
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Then, we apply the softmax classifier over the graph-based encoding and obtain the probability of each
class as:

pg = softmax(WfHT
a vf), (5)

where Wf ∈ Rn×dh and vf ∈ Rn×2 are the weight matrices. We apply the same calculation as Eq. 5 but with
different weight matrices to pretrained contextualized embeddings H(0). Finally, we get pc as the prediction
probability from the contextualized embeddings. A weight coefficient λ ∈ [0,1) is introduced to balance the
result from graph-based encoding models and the result from BERT-based contextualized models:

p = λpg + (1−λ)pc. (6)

This weighted strategy can also be viewed as an ensemble of two classifiers or the interpolation of the prediction
probability of two classifiers.

3.5 Model Training
We apply the negative log-likelihood loss function as the training objective. Because data in one of the datasets
used in our study is imbalanced and the number of instances of this dataset is not large where the down-
sampling method is not suitable, we use the weighted negative log-likelihood loss function to solve the data
imbalance problem [30]. Assuming that the number of documents containing ADE is N1 and the number of
documents not containing ADE isN2, the weight w+ for documents predicted as positive samples is N2

N1+N2
and

the weight w− for documents predicted as negative samples is N1
N1+N2

. The weighted loss function is:

L = − 1
N

N∑
i=1

(w+yi log(pi ) +w−(1− yi ) log(1− pi )), (7)

where N is the number of documents in one batch and yi is the true label of a document. When a document
contains ADE, yi equals to 1; otherwise, yi equals to 0. The Adam optimizer [17] is used for model optimization.
To control the learning rate, we use the multiple-step learning rate scheduler. The learning rate scheduler
decays the learning rate by the parameter γ when the number of epochs reaches a specific number.

4 Experiment

4.1 Data and Pre-processing
We used three datasets from the biomedical domain and social media to evaluate the performance of baselines
and our model. The details of these datasets are shown in Table 1. We perform data pre-processing before
building graph representation. Specifically, stop words, punctuation, and numbers are removed. For the data
collected from Twitter, we use the tweet-preprocessor Python package 1 to remove URLs, emojis, and some
reserved words for tweets.

Table 1: A statistical summary of datasets

Dataset Documents ADR non-ADR

SMM4H 2418 1209 1209
TwiMed-Pub 1000 191 809

TwiMed-Twitter 625 232 393

TwiMed-Twitter and TwiMed-Pub 2 The TwiMed dataset [3] includes two sets collected from different do-
mains, i.e., TwiMed-Twitter and TwiMed-Pub. They consist of documents from Twitter and PubMed, respec-
tively. People with different backgrounds annotate diseases, symptoms, drugs, and their relations in each doc-
ument. There are three types of relations: Outcome-negative, Outcome-positive, and Reason-to-use. When a
document is annotated as outcome-negative, it is marked as ADE (positive). Otherwise, we mark it as non-ADE
(negative). The TwiMed-Pub has a small number of documents containing ADEs. The weighted loss function
is used to solve the issue of imbalanced classification. Models are evaluated by 10-fold cross-validation.
SMM4H dataset 3 [29, 24] The dataset is from Social Media Mining for Health Applications (#SMM4H) shared
tasks. Documents collected from Twitter contain a description of drugs and diseases. The dataset contains

1https://pypi.org/project/tweet-preprocessor/
2https://github.com/nestoralvaro/TwiMed
3https://healthlanguageprocessing.org/smm4h-2021/task-1/
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17,385 tweets for training and 915 tweets for testing. In our experiment, since this dataset is large enough, we
conduct downsampling to mitigate the problem of imbalance, where we only use 2418 tweets, half of which
are negative (non-ADE) and the other half are positive (ADE). The training tweets are split into train and
validation sets, with a ratio of 9:1. We use the official validation set to evaluate the model performance for a
fair comparison with baseline models developed in the SMM4H shared task, such as [40, 28, 15].

4.2 Baselines and Evaluation
Precision (P), Recall (R), and F1-score are commonly used to measure different models in a classification task.
We report these three metrics in our results and mainly use the F1-score to compare models’ performance in
our experiments. We consider two sets of baseline models for performance comparison: 1) models explicitly
designed for ADE detection and 2) pre-trained contextualized models.

Customized models for ADE detection include:

• CNN-Transfer [21] (CNN-T for short): a CNN-based model with transfer learning module. It has two
sentence classifiers and a shared feature extractor based on CNN.

• HTR-MSA [35]: a model with hierarchical tweet representation and multi-head self-attention. This
model learns word representations and tweet representations with CNN and Bi-LSTM. The multi-head
self-attention mechanism is also applied.

• ATL [21]: a model based on adversarial transfer learning for the ADE detection, where corpus-shared
features are exploited.

• MSAM [41]: a model with the multihop self-attention mechanism. It captures contextual information us-
ing Bi-LSTM and applies an attention mechanism in multiple steps to generate semantic representations
of sentences.

• IAN [1]: interactive attention networks, a model to interactively learn attentions in the context and model
targets and context separately.

We compare our model with pre-trained language models on the SMM4H dataset as it is a recent dataset
not studied by the aforementioned ADE detection baselines. We use the base version of pretrained models in
our experiments for a fair comparison, which is the same setting as in the compared baselines.

• BERT [7]: a language representation models pre-training with unlabeled text. Yaseen et al. [40] proposed
a model that combined LSTM with a BERT encoder for ADE detection, denoted as BERT-LSTM in this
paper.

• RoBERTa [23]: a BERT-based model on the English language with slightly different pre-training strate-
gies. Pimpalkhute et al. [28] developed a data augmentation method with RoBERTa text encoder for
ADE detection, denoted as RoBERTa-aug in this paper.

• BERTweet [25]: a domain-specific model for English Tweets with the same architecture as BERT-base.
Kayastha et al. [15] built a model with BERTweet and single-layer BiLSTM for ADE detection, denoted
as BERTweet-LSTM in this paper.

4.3 Experimental Setup
We use Python 3.7 and PyTorch 1.7.1 to implement the model. The hyper-parameters we tuned in our experi-
ments are presented in Table 2. In our experiment, we set the hyper-parameter of the learning rate scheduler γ
and the milestone of epoch number to 0.1 and 30, respectively.

Table 2: Choices of hyper-parameters

Hyper-parameters Choices

Learning rate for text encoder 2e−5, 3e−5, 1e−4

Learning rate for classifier 1e−4, 5e−4, 1e−3

Learning rate for graph-based models 1e−3, 3e−3, 5e−3

Hidden dimension for GNN 200, 300, 400
Weight coefficient λ 0, 0.1 0.3, 0.5, 0.7, 0.9
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4.4 Main Results
We compared our model with baseline models for the ADE detection task to validate the performance of our
model. Table 3 and Table 4 show the results of TwiMed and SMM4H dataset, respectively. Our model achieves
the best performance for all datasets compared with other methods in terms of F1-score. The best result of
TwiMed-Pub is obtained with ClinicalBERT embeddings and a GAT encoder. As for SMM4H and TwiMed-
Twitter, the best combination of building blocks is RoBERTa embeddings and GCN encoder.

Table 3: Results of TwiMed datasets

Datasets Metrics HTR-MSA [35] CNN-T [21] MSAM [41] IAN [1] ATL [21] Ours

P (%) 75.0 81.3 85.8 87.8 81.5 88.4
TwiMed-Pub R (%) 66.0 63.9 85.2 73.8 67.0 85.0

F1 (%) 70.2 71.6 85.3 79.2 73.4 86.7
P (%) 60.7 61.8 74.8 83.6 63.7 84.2

TwiMed-Twitter R (%) 61.7 60.0 85.6 81.3 63.4 83.7
F1 (%) 61.2 60.9 79.9 82.4 63.5 83.9

Table 4: Results of SMM4H dataset

Methods P (%) R (%) F1 (%)

BERT-LSTM [40] 77.0 72.0 74.0
BERTweet-LSTM [15] 81.2 86.2 83.6
RoBERTa-aug [28] 82.1 85.7 84.3
Ours 86.7 93.4 89.9

As shown in Table 3, performances of HTR-MSA, ATL, and CNN-Transfer are lower than others. The net-
work structures of these three models are complex, resulting in a large amount of data being required. Thus,
it performs worse than other models on small corpora. MSAM achieves the best performance on recall, while
our model performs the best on precision and F1-score. Our model can balance precision and recall better.
The competitive performance on the three datasets also shows the high generalization ability of our model. In
Table 3, the performances of most models on the two datasets are significantly different. It is challenging to
detect ADEs from tweets since tweets are informal text and contain much colloquial language. However, our
model performs well on the TwiMed-Twitter dataset, showing that it can effectively encode information from
the informal text and better capture relationships of entities in a document. From Table 4, we can find that
other models are all BERT-based models. In contrast, our model employs GNN architectures, which suggests
GNN can significantly improve models’ performance on this task.

4.5 Analyses and Discussion
We further analyze the contextualized graph embedding model in this section, discuss the choice of different
building blocks, and conduct a case study.

4.5.1 Choice of Graph Encoders

Our experiment examines GCN and GAT to study which one is more suitable for the ADE detection task. We
record the best result under different graph encoders. For both GCN and GAT, we obtain the best result from
RoBERTa for the SMM4H dataset and TwiMed-Twitter. For TwiMed-Pub, the best result is obtained using
ClinicalBERT. From Table 5, we can find the results from the two GNNs are similar, showing that they both
performed well on this task.

4.5.2 Choice of Pretrained Embeddings

We examine three contextualized language models in our experiment. We record the best results with different
language models. When using RoBERTa, the best results for the SMM4H dataset, TwiMed-Pub, and TwiMed-
Twitter are from GCN, GAT, and GCN, respectively. When using ClinicalBERT, the best results for the SMM4H
dataset and TwiMed-Pub are from GAT, and for TwiMed-Twitter, the best result is from GCN. When using
BioBERT, the choice of GNNs for best results is the same as using ClinicalBERT.
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Table 5: Comparison on the choices of graph encoders, i.e., GCN and GAT

Graph Encoder
SMM4H TwiMed-Pub TwiMed-Twitter

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

GCN 86.7 93.4 89.9 88.6 84.3 86.4 84.2 83.7 83.9
GAT 84.8 92.3 88.4 88.4 85.0 86.7 83.1 81.9 82.5

Table 6: The effect of contextualized text embeddings obtained pretrained from different domains

Pretrained
Embeddings

SMM4H TwiMed-Pub TwiMed-Twitter
P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

RoBERTa 86.7 93.4 89.9 88.2 84.3 86.2 84.2 83.7 83.9
ClinicalBERT 81.5 92.3 86.6 88.4 85.0 86.7 80.1 80.7 80.4
BioBERT 80.9 93.4 86.7 88.2 84.0 86.0 81.2 80.6 80.9

From Table 6, we can find that, for TwiMed-Pub, there is little difference among the three pre-trained lan-
guage models. However, for the SMM4H dataset and TwiMed-Twitter, RoBERTa performs better than others.
The SMM4H dataset and TwiMed-Twitter dataset contain documents with many non-medical terms, while
ClinicalBERT and BioBERT are trained with many medical terms. Therefore, when there are insufficient med-
ical terms in the text, ClinicalBERT and BioBERT are unsuitable. RoBERTa is a better choice for informal text
for this task.

4.5.3 Ablation Study on the Attention Classifier

To examine the effect of the attention classifier, we conduct an ablation study in our experiment. We remove
the attentive classification layer and check the performance change in F1 scores.

From Table 7, we can find that after removing the attentive classification layer, values of F1-scores get
decreased for all three datasets. It suggests that the attentive classification layer can improve the model to
prioritize information in the heterogeneous graph. More meaningful content, such as the description of symp-
toms and drugs, medical terms, and other relevant information related to ADEs, can contribute more to final
predictions by employing attention mechanisms in the classification layer.

We also notice that F1 scores increase with the attentive classification layer, while precision scores for the
SMM4H and TwiMed-Twitter datasets decrease. The documents of these two datasets are both from Twitter.
Tweets are informal texts that do not follow the logical order, and their structures are unclear. They lack
medical terms, and some content that seems not to be related to ADEs may also help determine whether a
document contains ADEs or not. After applying the attentive classification layer, the model puts more attention
to parts directly related to the description of symptoms, resulting in a tendency where a tweet is more easily
to be predicted as a positive sample. Therefore, the precision value decreases after employing the attention
classification layer. Besides, we can find that the F1 score on the SMM4H dataset decreases to a greater extent
without an attentive classification layer. This dataset contains more documents compared to others. It suggests
that the attentive classification layer works better for larger datasets. For small corpora, models with simpler
architectures also perform well.

4.5.4 Effect of Weight Coefficient λ

The weight coefficient λ’s value controls the trade-off between the contextualized language models and graph
neural networks. When λ equals zero, only BERT-based pre-trained contextualized embeddings are consid-
ered. In 2, dashed lines show the values of the F1-score when λ equals to zero. After employing GNNs
(λ = 0.1,0.3,0.5,0.7,0.9), we can find that the value of the F1-score increases on all three datasets. It demon-

Table 7: Comparison between our model and the model without attentive classification layer

SMM4H TwiMed-Pub TwiMed-Twitter
P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

our model 86.7 93.4 89.9 88.4 85.0 86.7 84.2 83.7 83.9
- attentive layer 87.0 90.1 88.5 87.8 83.9 85.8 84.6 82.2 83.3

8



strates that convolutional GNNs can improve the performance of our model significantly. Determining whether
a symptom description is about the disease itself or adverse reactions resulting from the disease is a challenge
in ADE detection. Utilizing GNNs helps solve this issue since GNNs can better capture the cause-effect relation
and dependency between different entities of documents.

We can find the trend of the three lines are similar in respective plots of Figure 2. In terms of F1-score,
the best choices of the value of λ for three datasets are 0.5 (SMM4H), 0.9 (TwiMed-Pub), and 0.7 (TwiMed-
Twitter). It suggests how to choose the value of λ depending on which datasets we use and other model hyper-
parameters. Also, when values of λ are greater than 0.5, the F1 scores are relatively high. Therefore, we can
first choose a high value of λ to allow graph embeddings to contribute more.
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Figure 2: The effect of weight coefficient λ on values of metrics

4.5.5 Case Study

We conduct a case study to explore the effect of the attention mechanism in Eq. 4. We choose two documents
classified as positive samples in the SMM4H test dataset, where one is classified correctly while the other one
does not contain ADE. We record the attention scores of words of these two tweets and utilize a heap map
to show the value of different words’ attention scores in a document, illustrated in Figure 3. Figure 3a of a
correctly classified tweet shows nouns (such as medication, sideaffects and seroquel), verbs (such as jolting),
and sentiment words (such as hard and bad) related to drugs and symptoms get high attention scores. It helps
the model put more attention on these important words. However, assigning high attention scores to such
words does not ensure correct predictions. Figure 3b shows the attention scores of a tweet incorrectly classified
as a positive sample. We can find that words related to symptoms, negative sentiment, and drugs are still
getting high scores, while the tweet does not talk about ADE directly.
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(b) A tweet without ADE

Figure 3: Case study of the attention scores in two tweets: (a) with ADE; and (b) without ADE

5 Conclusion
The automated detection of adverse drug events from social content or biomedical literature requires the model
to encode text information and capture the causal relation efficiently. This paper utilizes contextualized graph
embeddings to learn contextual information and causal relations for ADE detection. We equip different con-
volutional graph neural networks with pre-trained language representation, develop an attention classifier to
detect ADEs in documents and study the effects of different building components in our model. By comparing
our model with other baseline methods, experiment results show that graph-based embeddings can better cap-
ture causal relationships and dependency between different entities in documents, leading to better detection
performance.
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[12] Shaoxiong Ji, Matti Hölttä, and Pekka Marttinen. Does the magic of bert apply to medical code assign-
ment? a quantitative study. Computers in Biology and Medicine, 2021.

[13] Tianwen Jiang, Qingkai Zeng, Tong Zhao, Bing Qin, Ting Liu, Nitesh V Chawla, and Meng Jiang. Biomedi-
cal knowledge graphs construction from conditional statements. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 18(3):823–835, 2020.

[14] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a freely accessible
critical care database. Scientific data, 3(1):1–9, 2016.

[15] Tanay Kayastha, Pranjal Gupta, and Pushpak Bhattacharyya. BERT based Adverse Drug Effect Tweet
Classification. In Proceedings of SMM4H Workshop, pages 88–90, 2021.

[16] Humayun Kayesh, Md Saiful Islam, and Junhu Wang. A causality driven approach to adverse drug re-
actions detection in tweets. In International Conference on Advanced Data Mining and Applications, pages
316–330. Springer, 2019.

[17] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

[18] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

10



[19] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinfor-
matics, 36(4):1234–1240, 2020.

[20] Hui Li, Xiao-Jing Guo, Xiao-Fei Ye, Hong Jiang, Wen-Min Du, Jin-Fang Xu, Xin-Ji Zhang, and Jia He.
Adverse drug reactions of spontaneous reports in shanghai pediatric population. PLoS One, 9(2):e89829,
2014.

[21] Zhiheng Li, Zhihao Yang, Ling Luo, Yang Xiang, and Hongfei Lin. Exploiting adversarial transfer learning
for adverse drug reaction detection from texts. Journal of Biomedical Informatics, 106:103431, 2020.

[22] Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han, Kun Kuang, Jiwei Li, and Fei Wu. BertGCN:
Transductive Text Classification by Combining GCN and BERT. arXiv preprint arXiv:2105.05727, 2021.

[23] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[24] Arjun Magge, Ari Klein, Antonio Miranda-Escalada, Mohammed Ali Al-Garadi, Ilseyar Alimova, Zulfat
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