
lable at ScienceDirect

Journal of Cleaner Production 212 (2019) 1345e1356
Contents lists avai
Journal of Cleaner Production

journal homepage: www.elsevier .com/locate/ jc lepro
LISA: Lightweight context-aware IoT service architecture

Sarada Prasad Gochhayat a, Pallavi Kaliyar a, Mauro Conti a, Prayag Tiwari b,
V.B.S. Prasath c, Deepak Gupta d, *, Ashish Khanna d

a Department of Mathematics, University of Padova, Italy
b Department of Information Engineering, University of Padova, Italy
c Department of Electrical Engineering & Computer Science, University of Cincinnati, OH, USA
d Maharaja Agrasen Institute of Technology, Delhi, India
a r t i c l e i n f o

Article history:
Received 13 October 2018
Received in revised form
6 December 2018
Accepted 9 December 2018
Available online 13 December 2018

Keywords:
Internet of things
Context-aware
Push-based services
Web services
Automatic query generator
* Corresponding author.
E-mail addresses: sarada1987@gmail.com (S.P. Goc

it (P. Kaliyar), conti@math.unipd.it (M. Conti), prayag.t
support@elsevier.com (V.B.S. Prasath), deepakgu
ashishkhanna@mait.ac.in (A. Khanna).

https://doi.org/10.1016/j.jclepro.2018.12.096
0959-6526/© 2018 Elsevier Ltd. All rights reserved.
a b s t r a c t

Internet-of-Things (IoT) promises to provide services to the end users by connecting physical things
around them through Internet. The conventional services build for web are primarily based on the pull
technology, where the user actively engages with system to get the services. However, in IoT environ-
ment, the services are based on push-based, where information and value added services will be pushed
towards the user. Unless, these push-based services are properly managed they would overwhelm the
user with unnecessary information, thus, it will soon start annoying the user.

In this paper, we propose a lightweight context-aware IoT service architecture namely LISA to support
IoT push services in an efficient manner. In particular, LISA filter and forward the most important and
relevant services to the users by understanding their context. To achieve its goals, LISA formulates a user
model to resolve local decision making by using agents and available web services paradigm. The pro-
posed user model describes the user in an abstract way by considering the context and profile infor-
mation of the user. For evaluation, we simulate LISA by considering an IoT tourist guide system as a use
case scenario, and we show the performance of the our user model concerning precision and recall
metrics. The results of our preliminary experiments confirm that LISA successfully reduces the infor-
mation provided to the user by selecting only the most relevant among those. The evaluation shows that
LISA can extract services for a user by selecting from 15000 services with precision upto 0.3 and recall
upto 0.8, and it can be further optimized by tuning the user-specific design settings. Additionally, our
approach shows improvements in query processing time which also includes the query generation time.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Internet-of-Things (IoT) paradigm blurs the boundaries between
physical objects and computational intensive devices by connecting
them through Internet (Aksu et al. (2018); Conti et al. (2017)). It
promises to provide user-centric services by considering both, the
user context and the user profile information (Kim et al. (2009);
Recker et al. (2003)). The existing IoT services have some limitations
such as: execution of the tasks within the user devices that has
limited computational power and memory (Chiu and Leung
hhayat), pallavi@math.unipd.
iwari@dei.unipd.it (P. Tiwari),
pta@mait.ac.in (D. Gupta),
(2005)), the information provided to the user might be rigid
(Kenteris et al. (2009)), lack of consideration of the time, device, or
network constraints of the user (Hashemian andMavaddat (2005)),
and the most important, the user is overwhelmed by the infor-
mation as not all the services or data pushed towards her is of in-
terest. Thus, the techniques of service creation and dissemination
needs to consider the above mentioned limitations as well as de-
mand of new system design (Douzis et al. (2018)), i.e., shift from
conventional pull based web services to push-based web services.

The conventional web services are built on pull-based applica-
tions, where the user formulates a particular query to get the ser-
vices. Here, a query is a set of the most relevant terms for a service.
The problem with this approach is that the user explicitly involves
with the system to get the service. However, in IoT domain, the
services will be push-based where service providers will push the
service towards the user. For example, in IoT advertisement (Aksu

mailto:sarada1987@gmail.com
mailto:pallavi@math.unipd.it
mailto:pallavi@math.unipd.it
mailto:conti@math.unipd.it
mailto:prayag.tiwari@dei.unipd.it
mailto:support@elsevier.com
mailto:deepakgupta@mait.ac.in
mailto:ashishkhanna@mait.ac.in
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jclepro.2018.12.096&domain=pdf
www.sciencedirect.com/science/journal/09596526
http://www.elsevier.com/locate/jclepro
https://doi.org/10.1016/j.jclepro.2018.12.096
https://doi.org/10.1016/j.jclepro.2018.12.096
https://doi.org/10.1016/j.jclepro.2018.12.096

S.P. Gochhayat et al. / Journal of Cleaner Production 212 (2019) 1345e13561346
et al. (2018)), the service provider will send notifications about
different advertisements toward the user. The existing push-based
systems like SMTP-based email, in which the sender pushes the
email to the SMTP email server which the receiver downloads
(Duan et al. (2005)), are inadequate in IoT domain and are
computationally heavy. Moreover, as there will be thousands of IoT
services around the user, these services will create information
burden to the user and it will also consume network resources.
Hence, there is a need to design a lightweight service architecture
for IoT environment (Gudla and Bose (2016); Bormann et al. (2012))
which considers the above mentioned requirements of IoT services.

In an IoT environment, the applications provide personalized
and adaptive services to end users. Due to the huge set of devices
involved, and therefore, its pervasiveness, IoT is a great platform to
leverage for building new applications and services or extending
the existing ones. In the past, the web services paradigm is used as
it provides the advantages of building distributed applications.
Hence, it helps to select and provide various IoT services to the
users as per their context. As the number of web services increases
exponentially, selecting and providing the appropriate service
among the vast number of required services become very difficult.
Hence, to search the most relevant service, a correct query needs to
be formulated.
1.1. Contribution

In this paper, we propose LISA, a lightweight context-aware IoT
service architecture for supporting IoT push services in an efficient
manner. The main role of LISA is to reduce the communication
overhead between user domain and service domain (refer to Fig. 1).
First, LISA analyzes: (i) the user context and generate a query on
behalf of the user, and (ii) the set of services that are pushed to-
wards the user. Then it selects the most relevant services that need
to be forwarded to the user. In the beginning, it formulates a user
model, then it uses agents to select the relevant services locally, and
subsequently, it exploits the advantages of web services. While
existing systems selects the relevant services for the user centrally
at the cloud (Yu et al. (2018)), our approach uses agents, which act
independently to provide personalized services (Germanakos et al.
(2005)) and to perform the tasks distributively. The agents generate
the query, fetch the information, and use the formulated user
model to adapt the content to provide the required information in
the best suitable way. In case of a failure of one agent (mobile or
static), another agent is deployed to look after the user needs. The
proposed architecture is based on the fact that a significant set of
problems can be solved efficiently, if these are addressed locally. By
doing so, the architecture provides features such as faster and
efficient local decision making and fault tolerance, short service
Fig. 1. Role of LISA in IoT environment.
selection time, and dynamic integration of new services. To this
end, the major contributions of our work are as follow.

� We present the design of an IoT service architecture, which
enables the important IoT services to reach the user based on
his/her context information. We show that the different mod-
ules in our architecture (such as Query Initiator, Automatic
Query Generator, Web Service Provider, and Web Service
Adaptation) efficiently fulfill the essential requirements of IoT
service provisioning that includes, usability, accountability, and
adaptability.

� We demonstrate the importance of distributed agents to locally
solve the overload problem of IoT push based services. As a
result of our distributed approach, we achieve improvements in
both, the response time and the bandwidth utilization, the two
parameters which are crucial to provide IoT services effectively.
In particular, LISA considers the energy limitations and band-
width usages in the IoT network by delegating its functionality
to the local agents.

� Finally, we tested our proposed architecture on a simulated IoT
tourist guide system use case scenario to show its effectiveness.
The simulation results obtained show the feasibility and cor-
rectness of our proposal.
1.2. Organization

The rest of the paper is organized as follow. Sections 2 and 3
present the related work and the terminologies used in our pro-
posal. In sections 4 and 5, we present our proposed web service
architecture and the IoT user query generation model along with
the details of their functionality and the interaction mechanisms
between different components of the architecture. The simulation
setup and performance evaluation are discussed in Section 6.
Finally, conclusion and directions for future work are given in
Section 7.

2. Related works

In this section, first we present evolution in state-of-the-art for
push based applications in web domain and automatic query gen-
eration techniques inweb services. Then, we specify the need for an
efficient lightweight IoT service architecture.

Most of the existing push based approaches have been devel-
oped for web browsers and generally require an explicit involve-
ment of the user. In (Gudla and Bose (2016); Gudla et al. (2016)), the
authors propose a smart push system with feedback enabled flow
control. In the proposed system, a gateway client is installed on the
user device which is integrated to the browser app. The gateway
client observes the feedback from the user, and the user behavior
from the feedback is considered to develop the push system. In
(Cho et al. (2016)), the authors propose a feedback concept to
maximize the service utilization by preventing the system from
delivering unnecessary messages to the users. Thus, it improves the
average transmission rate for the required notification messages.
Authors in (Duan et al. (2005)) emphasize the fundamental impli-
cations of push and pull techniques and suggest the use of receiver-
pull model to curb the unwanted Internet traffic. Based on their
suggestion, our work uses receiver-pull model for wisely selecting
the push-based services. In (Karagiannis et al. (2015)), authors
discuss and compare different application layer protocols, which
are needed to handle communications by assuming that all the
end-devices make their data available to the Internet by sending
the information to aweb-server or cloud. This raises several privacy
implications like Does the cloud need to know if the SmartKey is

S.P. Gochhayat et al. / Journal of Cleaner Production 212 (2019) 1345e1356 1347
connected to the SmartVehicle?, which can be addressed by keeping
the private and sensitive data in the edge rather than sending it to
the centralized cloud (Kim and Lee (2017)).

So far the problem of automatic query generation in IoT envi-
ronment has not been addressed in detail, although, a few research
papers discuss about the automatic generation in web applications
like patent search. For instance, an automatic query generation for
patent search has been discussed in (Xue and Croft (2009)) to
transfer a query patent to a search query by combining different
search features with machine learning techniques. A query taxon-
omy generation is discussed in (Chuang and Chien (2003)), which
organizes the user queries in a hierarchical structure, and it helps
the web applications to retrieve the information. Authors in (Singh
et al. (2017)) made an attempt on exploring the performance of
relevance feedback using individual query expansion term selec-
tion approaches, and later it also uses several rank aggregation
approach to aggregate the query expansion terms, which improved
the performance of the system.

Early works on content delivery in IoT environment using agents
is discussed in (O'Hare and O'Grady (2003); Gochhayat and Pallapa
(2015)). In few proposals, the context-information has been
considered to improve the query retrieval performance. In (Shen
and Zhai (2003)), the authors have considered the user query his-
tory as the context information to revise the query and to improve
the retrieval performance of the current query. The context infor-
mation, the previous queries, and the URLs clicked by the user, has
been used to classify the queries in (Cao et al. (2009)). The location
information, which is considered as the essential context param-
eter is generally used to provide location-based services. The au-
thors in (Shankar et al. (2009)) designed a scheme, which uses the
location information to query the location-based services while
maintaining the privacy. To select appropriate services and to
provide personalized web services the user profile is considered in
(Balke and Wagner (2003)). The scheme expands the user's service
requests by considering user-specific demands and wishes. User
context has been considered to discover suitable services
(Doulkeridis et al. (2006); Sheng and Benatallah (2005)) and to
provide context-aware web services (Chen et al. (2006); Yang et al.
(2008)) in the continuously changing environment. To take the
limitations of the above mentioned works into account and to
advance the state-of-the-art, the agents in our proposed architec-
ture generate queries automatically. It is done by considering the
three important axes of IoT ecosystem, which includes context,
Fig. 2. Three important technolo
profile, and history information. The use of these axes will improve
the user quality-of-experience as well as the resource utilization in
the resource constrained IoT networks.

3. Terminologies

In this section, we discuss a set of primary terminologies that are
used in our work. The proposed work is based on three funda-
mental technologies: (i) IoT services, which provide different types
of services to users in a distributed environment; (ii) IoT user
model, which represents the user in an abstract manner; and (iii)
Agents, which manage and adapt the content based on user model
(please refer to Fig. 2). We first discuss about IoT applications and
their requirement in 3.1, then the IoT user query in 3.2, and sub-
sequently we discuss IoT user model, web services, and agent
technologies in sections 3.3, 3.4, and 3.5, respectively.

3.1. IoT application

An IoT application provides comprehensive, coherent, and
personalized services to the end user. It is done by collecting user
related information from distributed information repository, and
by adapting and providing the informationdvisual, audibledbased
on user-specific requirement and preferences (Bormann et al.
(2012)). To develop IoT applications, one has to consider the
following essential requirements.

� Usability: In IoT, most of the applications would push their
services towards the user, and these services should be handled
properly along with the ability of the user to control them.

� Controllability: The user should have the power to control over
when and what services or notifications it receives by defining
its own interest before the application content is pushed to-
wards her (Duan et al. (2005)). The user controllability of the IoT
devices would keep the user secured in the case of an emer-
gency or life-threatening situation.

� Accountability: The user should quickly verify that the promised
services are being provided by the service provider (Zhou et al.
(2017)), i.e., the provider should be accountable for the services
which it provides in order to avoid malicious behavior.

� Resource-constraints compliant: The user devices in IoT envi-
ronment will have resource constraint, so theymight not be able
to do all the operations all the time. Hence, some part of the
gies required for IoT service.

S.P. Gochhayat et al. / Journal of Cleaner Production 212 (2019) 1345e13561348
operations should be delegated to a trusted resource-rich close-
by devices. The tools like agent technology and edge computing
provides better solutions in this context (Li et al. (2017); Kim and
Lee (2017); Halder et al. (2018)) and the same should be
explored further.

� Adaptability: In order to dynamically invoke the web services
which can cater the user's need, an automatic query formulation
method is needed. It should have the ability to dynamically
generate the query on behalf of the user by considering the
user's current context, profile information, and the past queries
made by the other users.
3.2. IoT user query

In IoT environment, the applications should formulate a query to
get the services to support the user activities. The IoT user query is a
query which is generated by the IoT system on behalf of the user to
get the relevant services in a given context. It consists of the most
probable query terms at a given location and time, and the context
and personal information of the user. While, to avail web services,
the existing mechanisms demand the users to specify their re-
quirements, therefore, the IoT user query model should automati-
cally generate a query to reflect the user requirements for the
services. For our proposal, the format of IoT user query is given in
5.3, and the IoT query will be formed based on IoT user model.

3.3. IoT user model

A user model is a collection of user information. It is essential in
IoT environment that the system generates the IoT user query and
adapts to the services. The IoT user model represents the user and
the environment in an abstract way. The process of building,
updating, and modifying a user's model, i.e., user modeling, is very
challenging because of the dynamic environment and different
users' requirement (Nurmi et al. (2006)).

A user model includes multidimensional user information such
as spatial-temporal characteristics (time, location, and other
context information), interpretation (understanding level of the
user, i.e., the way user perceive), and preferences (user-centric re-
quirements). The IoT user model can have the following
information.

� Personal information: The personal information consists of: 1)
user interest and preferences (academic, professional or per-
sonal), 2) user understanding or knowledge level, 3) user goal
(short-term or long-term), 4) access rights to the information
(security aspect), and 5) time constraints, i.e., the time inwhich
user has to go through the information (less or more time
which can be derived from the calendar or event lists) (Nurmi
et al. (2006)). Additionally, a user's personal information can be
stationary (e.g., name, gender, and blood group) or dynamic
(e.g., knowledge, age, educational qualification, and financial
status).

� Context information: The use of contextual information can
improve the system effectiveness and user experience. Context
characterizes the current environment of the user which in-
cludes physical, system, application, and social aspects. These
aspects will help the system to understand the user and provide
the desired services in different situations. The physical context
includes information such as location, time, temperature, and
pressure, while the system context includes device type, and
device capacity, and the application context includes application
type (e.g., health care, business, tourist, education) and social
application includes information about social events, and the
status of the user in the group (Melucci et al. (2012); Melucci
(2005); Melucci and White (2007)).
3.4. Web services

Web services are self-contained, distributed, modular, and dy-
namic information exchange systems (Kosuga et al. (2002);
Hashemian andMavaddat (2005)). Web services use a standardized
XML messaging system to make itself available over the Internet
(Staab et al. (2003); Roy and Ramanujan (2001)). Thus, these ser-
vices improve the interoperability and extensibility to exchange
data over various computer networks (Roy and Ramanujan (2001)).
Hence, the personalized services that are based on the user model
can be provided using the web services by selecting and locating
the most relevant service (Lueg (1998)) to reduce user's informa-
tion burden (Carvalho et al. (2010)). The Web services use XML to
describe a standardized way of integrating web-based applications.
Web services are built around the collection of open protocols and
standards such as TCP/IP, HTTP, Java, HTML, and XML to provide
interoperability and for exchanging data between applications or
systems. All the standard web services works using the following
components: 1) SOAP (Simple Object Access Protocol), it is used to
transfer the data; 2) UDDI (Universal Description, Discovery and
Integration), it is used for listing the available services; and 3)
WSDL (Web Services Description Language), it is used for
describing the available services.

3.5. Agents

Agents are autonomous programs that execute applications on a
device on behalf of the user's IoT environment (Chen (2013)). The
essential features of agents are autonomy and adaptability. The
mobile agents are those who are not bound to the device where
they were created, and they travel from device to device by
resuming their execution (Manate et al. (2013)). The agents are
used in a distributed computing environment for their inherent
capabilities, i.e., asynchronous autonomous interaction, robustness
and fault tolerance, and support for heterogeneous systems (Sim
(2012); Fortino et al. (2014)). The agent based systems solve the
scalability problem faced by the centralized systems. The func-
tionality or the task assigned to an agent, which executes the task in
a distributed and autonomous fashion, can be easily monitored and
modified by the manager by updating the software code of the
agent. Faults can be easily detected using mobile agents by
analyzing the devices connected to a network.

The agents run on an “Agent Platform” which offers execution,
communication, mobility, tracking, directory, persistence, and se-
curity services (Xu et al. (2013)). The execution environment and
the mobility service allows agents to run their code and enables an
agent to move within different execution environments. The mo-
bile agents are secured, as the mobile agent platform provides
encryption, code integrity for transmission and execution,
authentication, and trust. JADE and Voyager are popularly used
mobile agent platforms, which provide the above-mentioned ser-
vices and use SSL connection to assure data flow encryption and to
detect any attempt to tamper with an agent. Agents play an
important role in highly distributed environment like IoT
ecosystem (Rho et al. (2013)).

4. LISA: proposed IoT service architecture

In this section, we present our proposed IoT service architecture
called LISA, and we describe its working methodology in detail. The
objective of the LISA is to filter the most relevant services based on

S.P. Gochhayat et al. / Journal of Cleaner Production 212 (2019) 1345e1356 1349
user's context and profile information. To achieve the objective
following functionalities are provided by the LISA: 1) it generates a
query automatically using the past queries made by the users and
the IoT user model; 2) it selects the most relevant services from the
set of available services; and 3) it adapts the content based on IoT
user model, whenever required. The overview of our proposed IoT
service architecture along with its major components and their
interactions with each other is shown in Fig. 3.

We now present the functioning of the service architecture by
describing its different component or modules.

� Query Initiator Module (QIM): This module triggers the
Automatic Query Generator (AQG) based on the change in the
user context information, to form a query on behalf of the user.
The context value changes when any of the following events
happen: 1) Location change - based on the proximity or the
closeness of the user and the object of interest; 2) Time change -
events which happens during a particular time of the day,
month, or year such as lunch time, festival time, and season of
the year; 3) Social change - the role played by the user in a so-
ciety or group changes as happens in a meeting; and 4) User
requirement change - the user requirement depends on the dy-
namic mood or emotional state of the user. Although location
change is taken into account while designing system in recent
years, but all the other above mention “changes” needs to be
considered to initiate the query generator. The change of the
context information can be given priorities based on the appli-
cation, such that for a particular application the system initiates
the query generator but for others it does not. For example, the
“location change” information will be most useful for applica-
tions like tourist guide systems and IoT museum, while it might
not be important during IoT health-care system (where the
patient's health condition is more important than its location).
Section 5.1 explains the functionality of QIM in detail.

� Automatic Query Generator (AQG): It forms the query based on
the context information, profile information, and the past
queries generated by the users. By comparing the user profile
information such as age group, salary, and educational qualifi-
cation with the past users, the AQG selects the best suitable
query terms for the query generation. The selection of query
terms and the formulation of the query in LISA are discussed in
detail in sections 5.2, and 5.3.
Fig. 3. LISA arc
� Web Service Provider (WSP): It specifies different kinds of
services provided by various providers. It collects all the infor-
mation about the web services and sends it to the web service
adaptation module, which selects the services based on the
context information and provides them to the users. The WSP
uses UDDI (Universal Description, Discovery, and Integration) to
get the list of relevant services available based on the query
generated by the AQG. It uses WSDL (Web Services Description
Language) for understanding the description of the relevant
services, and it uses SOAP (Simple Object Access Protocol) to
gather the information from the relevant services.

� Web Service Adaptation Module (WSAM): It selects the ser-
vices by checking the gathered data from the service providers
with the IoT user model to find out the most suitable web ser-
vices for the user, and it adapts the content collected from
different service providers to present it to the user in the best
suitable way. The services were selected based on the query
terms, and the device and time constraints. For finding the
similarity between the query terms and the services, LISA use
Jaccard Index (Nayak and Lee (2007)). Jaccard similarity coeffi-
cient or Jaccard index is a way to compare the diversity and
similarity of sample sets. Jaccard similarity is used for
comparing two binary sets. The Jaccard Index between the
query terms set Q and set of terms defining ith service (Si) is
defined as,

SimQ�Si ¼
TQ ;Si

TQ þ TSi � TQ ;Si
; (1)

where TQ and TSi are the numbers of terms in sets Q and Si
respectively; TQ ;Si is the number of terms common in sets Q and Si.
The services are selected based on the user device specification. The
available time of the user that can be gathered from the user
schedule is compared with the service response time of each ser-
vice to find a suitable service. The service response time (RTSi) of a
service Si is calculated as follow,

RTSi ¼ STSi þ DTSi þWTSi ; (2)

where, STSi , DTSi , and WTSi are the service time, i.e., the time taken
by service provider to execute the service (Gudla and Bose (2016)),
the delay time, i.e., the time taken by service provider to receive the
request and send the service, and the waiting time, i.e., the time a
hitecture.

Table 1
Different context types and their corresponding ratings.

Context Information Types Rating

Location Everywhere 1
(L) Mobile 2

Location Specific 3
Time Always 1
(T) Temporal 2

Emergency 3
Social status Individual 1
(S) Group Hierarchy 3 2

Group Hierarchy 2 3
Group Hierarchy 1 4

User Requirements Regular 1
(R) Application Specific 2

User Mood 3

S.P. Gochhayat et al. / Journal of Cleaner Production 212 (2019) 1345e13561350
user request has to wait before it get service from the service
provider (Silver et al. (2003)). The Relative Time Difference (RTD)
based on the available user time (UT) and service provider's Si time
(RTSi) is calculated as follow,

RTDSi ¼ 1�
��UT � RTSi

��
max

�
UT;RTSi

�: (3)

The services having SimQ�Si þ RTDSi values higher than the
threshold value are considered for the service provisioning.

� Static Agent (SA):The Static Agent (SA) administers the overall
functioning of the system and makes the system work well in a
distributed environment by generating and dispatching the
mobile agents (MAs). In order to distribute workload, and to
tackle single point failure, we consider a set of SAs, which can
work together to distribute the burden among them. The func-
tions of a static agent at the IoT services are:
e to register the user to collect her personal information and

the context information.
e to activate the AQGmodule whenever it gets any information

from the QIM to start or modify a service.
e to calculate the user and applications statistical information

to provides it to the IoT user model to update the user model.
e to instruct the web service provider to fetch the web services

for the user whenever required and provide this information
to the web service adaptation module to adapt the content,
and to provide the adapted information to the user.

e to interact with other SAs to distribute the work.
e to anticipate the user movement to the next subnetwork.
e to generate and dispatch aMA to the next subnetwork, where

the user is about to migrate.
� Mobile Agent (MA):The MAs are created and dispatched by SAs
to act on their behalf to formulate the query and do the web
service adaption and provision. The functions of a MA in a
subnetwork are:
e to carry user's information with it, i.e., the IoT user model

from SA.
e to analyze the context information of the user in the sub-

network and formulate the query on behalf of SA.
e to collect the web services and adapts the information based

on the user device and context information.
e to inform the SA about the user activities in the subnetwork.
e to predict the user movement and alert the SA about the

same, so that the SA can generate another MA (if one is not
available) and dispatch it to the next subnetwork where the
user might migrate.
5. IoT user query generation model

In this section, we discuss the process of the automatic IoT query
generation in LISA. The creation of a query has the following three
stages: initiation of the query, selection of query terms to form a
query, and formation of IoT query.

5.1. IoT Query Initiator

The IoT Query Initiator Module (QIM) works in the following
way. First, it collects the context information from the environment.
Then it checks whether the change in the context information is
relevant to initiate the IoT query model. If the quantified change is
more than the threshold value, it activates the AQG to generate the
query. The AQG form a query based on the current context infor-
mation like location (the user's closeness to the object), time (social
status change - the role played by the user in a group changes), and
user requirements. The “location information” is further divided
into three types: Everywhere, Mobile, and Location specific. The
Everywhere indicates that the service is required everywhere, the
Mobile means the queries need to be modified based on the user
movements, and Location specific characterizes that the informa-
tion needs to be specified based on the location. The “Time infor-
mation” is also divided into three levels: Always, Temporal and
Emergency. Here, Always represent the service in need to be pro-
vided all the time, Temporal means service needs to be presented
based on the temporal information like lunch time or dinner time,
and Emergency indicates that the services need to be provided or
changed dynamically at the emergency time. The “Social Status” is
divided into four tiers: Individual, Group Hierarchy 3, Group Hier-
archy 2 and Group Hierarchy 1. The Individual means the user is
alone, while the Group Hierarchy 3, Group Hierarchy 2 and Group
Hierarchy 1 represent the user's role in the group from the lowest to
the highest order. The “User requirements” is divided into 3 cate-
gories: Regular, Application Specific, and User Mood. The Regular
category represents that the user does not want any specific in-
formation, application specific represents that the applications de-
mand need to be met to run the service properly, and User mood
considers the volatile moods to provide the services. Table 1 shows
the context, their types, and the rating associated with them.

The following four type of events take place because of the
change of context information: Location_event (Le), Time_event
(Te), Social_event (Se), and Requirement_event (Re). The Locatio-
n_event value is calculated as follows.

Le ¼

8><
>:

1 If
jLRt2 � LRt1 j
Highest LR

> Lth;

0 Otherwise;
(4)

where LRt2 and LRt1 are the location rating at time t2 and t1,
respectively, Highest LR and Lth (chosen by the system designer) are
the highest rating of the location context type and the threshold
value abovewhich the change in location information is considered
relevant. The QIM informs AQG if any one of these events occurs as
it is shown in Equation (5). The algorithm of the IoT Query Initiator
is shown in Algorithm 1.

Action ¼
�
Inform AQG Le4Te4Se4Re ¼ 1
No Action Otherwise:

(5)

S.P. Gochhayat et al. / Journal of Cleaner Production 212 (2019) 1345e1356 1351
5.2. Query terms selection

In this section, we discuss the process of Query Term Selection
(QTS) for the formulation of the query, which is based on the user
history, context, and profile information. It is also based on the
queries generated by the users in the past (Shen and Zhai (2003))
that are stored in the query log. Each query generated in the past at
a particular location around a specific time shows the importance
of the location and time. For example, querying about a restaurant
of specific interest during lunch time (Cao et al. (2009)). As different
people have different interests and desires, choosing the query best
suited to the person's desire is essential. The queries generated by
the users in the past are saved in the query log from which the
query terms are selected to automatically create the new query. To
select the query terms, the frequency of the query terms, and the
weight assignment to the terms based on the user's profile infor-
mation are considered.

Let Q ¼ fq1; q2; …; qng be a set of queries generated in the past
by the users at a particular instant of time. Here query qi is a set of
terms, i.e., qi ¼ ft1; t2;…g. Let QTS be the set of all the terms in the
query log that are collected at a particular instant of time, i.e., QTS ¼
∪i¼1fqig ¼ ft1; t2;…; tmg. Let tvi be the weight associated with the
term ti of QTS, and it is calculated by finding the number of queries
that have the term by total number of terms,

tviðtiÞ ¼

���nqj : ti2qj & ti2Q
o���

jQTSj : (6)

Let au and su be the age and salary information of the user u. The
age and salary of a user can fall into different levels, and these are
considered to calculate the percentage of the users belonging to a
particular level who have queried in the past. Let A and S be the
total number of levels in age and salary categories.

Let

Dage perðt1Þ ¼ fdap1; dap2;…;dapAg

Dsalary perðt1Þ ¼ fdsp1;dsp2;…;dspSg

be the sets whose elements represent the percentage of the total
users belonging to a particular level queried the term ti, in age and
salary categories respectively. Let

Dage weiðt1Þ ¼ fdaw1; daw2;…; dawAg
Dsalary weiðt1Þ ¼ fdsw1; dsw2;…; dswSg

be the sets of weight assigned to the different levels of age and
salary based of u's age and salary information.We use the following
weighing method: 1) assign priority value 1 to the level to which
the user belongs, 2) multiply a (where 0<a<1) to the previous
assigned value and assign it the priority value to the immediate
levels (i.e., below and above) of the user level, 3) continue the same
for other levels till all the levels have been assigned with the pri-
ority value, and 4) normalize the values to get the assigned weight.
For example, if a user belongs to level 3 of 5 level of user division,
the priority value assign to the level 3 is 1 (see Table 2), the priority
value assigned to levels 2 and 4 (the immediate levels) is a, and the
priority value of levels 1 and 5 is a2. Then the weight assigned for
level 1 to 5 are a2=ðtotal priorityÞ, a=ðtotal priorityÞ, 1,
a=ðtotal priorityÞ, a2=ðtotal priorityÞ, respectively (where
total priority ¼ 2a2 þ 2aþ 1).

We assign a weight to the term t1 for the u based on the age and
salary. The weightageðt1Þ ¼ dap1*daw1 þ dap2*daw2 þ…

þdapA*dawA and weightsalaryðt1Þ ¼ dsp1*dsw1 þ dsp2*dsw2 þ …þ
dspS*dswS. The query terms selected are based on weightage,
weightsalary and the frequency of the term ti. We generate Selected
Query Terms (SQT) set by considering the termswhose total weight
(totalweightðtiÞ) (i.e., the summation of all weight values) is more
than the threshold. The algorithm of the QTS is shown in Algorithm
2.
5.3. Formation of IoT query

The generic IoT user query (Q) is represented as follow.

UQ :¼ f< T > ; <UA> ; <UD> ;
<UUH> ; <UUM> g (7)

where 〈T〉; <UA> ; 〈UD〉; 〈UUH〉; and<UUM> are query term set,
IoT application specification, IoT device specification, IoT history
parameters, and IoT user model, respectively.

� Query Terms set (QTS): The QTS is represented as:

Table 2
Different User level and his priority at different levels.

User Level/Weight Level 1 Level 2 Level 3 Level 4 Level 5 atotal

Level 1 1
atotal

a

atotal
a2

atotal

a3

atotal

a4

atotal

1þ aþ a2 þ a3 þ a4

Level 2 a

atotal

1
atotal

a

atotal
a2

atotal

a3

atotal

1þ 2aþ a2 þ a3

Level 3 a2

atotal

a

atotal

1
atotal

a

atotal
a2

atotal

1þ 2aþ 2a2

Level 4 a3

atotal

a2

atotal

a

atotal

1
atotal

a

atotal
1þ 2aþ a2 þ a3

Level 5 a4

atotal

a3

atotal

a2

atotal

a

atotal

1
atotal

1þ aþ a2 þ a3 þ a4

S.P. Gochhayat et al. / Journal of Cleaner Production 212 (2019) 1345e13561352
< T > :¼ fðt1; tv1Þ; ðt2; tv2Þ;…; ðtm; tvmÞg; (8)

where t1 is the term attribute t12SQT , and tv1 is the associated
term values, i.e., the frequency of the term.

� IoT Application Specification set: The IoT Application Specifica-
tion set is represented as follow.

<UA> :¼ fðua1;uav1Þ; ðua2;uav2Þ;…;
ðuan;uavnÞg (9)

where ua1 is the IoT application attribute and uav1 are the associ-
ated attribute values. The different attributes required for the IoT
application specification are: 1) language of the content
(Application _ Language), 2) available multimedia resources - text,
audio, video (Application Content Type), 3) application type, -
informative, Guide system, route information, cost, quality
(Application Type), and 4) application constraints or toleration limit
(Application_Constraints) such as time and area constraints. The
time constraint consists of time to visit the museum or tourist spot,
average duration of visit, opening and closing time of tourist spot,
restaurant, or hotel. The area constraints such as area of the
museum and the transportation means available in the areas are
also considered.

� IoT Device Specification set: The IoT Device Specification set is
represented as follow.

<UD> :¼ fðud1;udv1Þ; ðud2;udv2Þ;…;�
udp;udvp

�� (10)

where ud1 is the IoT device attribute and udv1 are the associated
attribute values. The different device attributes considered are: 1)
device type (Device Type) such as Smart phone, PC, and laptop, 2)
device screen resolution, 3) network interfaces (Device Network)
that the devices has, 4) device interface (Device Interface), i.e., touch
screen or keypad, and 5) device sensors (location, orientation,
speed).

� IoT User History set: The IoT User History set is represented as
follow.

< IUH> :¼ fðuh1;uhv1Þ; ðuh2;uhv2Þ;…;�
uhq;uhvq

�� (11)

where uh1 is the IoT history attribute and uhv1 are the associated
attribute values. The user history which is stored in a database can
be used to find different attributes such as: 1) the time spend at an
exhibition/museum (User time history), 2) the type of content -
audio, video, text, usually preferred or seen by the user
(Content Type seen), 3) the means of travel - walking, cycling,
driving, or traveling by bus, metro, train, or flight (Means of Travel),
and 4) user mobility history.

� IoT User Model set: The IoT User Model set is represented as:

<UUM> :¼ fðum1;umv1Þ; ðum2;umv2Þ;…;
ðumr;umvrÞg (12)

where um1 is the IoT user model attribute and umv1 are the asso-
ciated attribute values. The Usermodel consists of attribute such as:
1) the demographic data (Demographic data) of the user - age,
education level, interest, disabilities (e.g., blind, deaf); 2) Types of
monument preferred by the user - church, historical or geograph-
ical spot; 3) Travel Preference (Travel Preference) - by walk, bus,
train, car; and 4) the user location (User Location).

Two examples of the IoT user queries are given below:

� Query 1: History of the Old buildings in City X

fTg :¼ f“Hisotry”; “old”; “building”; “City X”g

fUAg :¼ fType of Info ¼ “Monument info”; Language Info

¼ “English”;Opening Time ¼ “10am”;Closing Time

¼ “5pm”; g

fUDg :¼ fDevice Type ¼ “Smart Phone”;Device Network

¼ “4G”;Device Interface ¼ “Touch Screen”g

fUUHg :¼ fUser Time History ¼ “1 hour”;Content Type Seen

¼ “text; audio”;Means Of Travel ¼ “rental car”g

fUUMg :¼ fLocation ¼ “Home”; Location Coordinate

¼ “x; y”;Demographic age ¼ “34”;Demographic edu

¼ “Graduate in History”; Prefer Type of building

¼ “Historical”g
� Query 2: Climate of City Y

fTg :¼ f“Climate”; “City Y”g

S.P. Gochhayat et al. / Journal of Cleaner Production 212 (2019) 1345e1356 1353
fUAg :¼ fType of Info ¼ “Weather info”; Language Info

¼ “Chineese”;Opening Time ¼ “5am”;Closing Time

¼ “1pm� 2pm; 8pm”; g

fUDg :¼ fDevice Type ¼ “Mobile Phone”;Device Network

¼ “3G”;Device Resolution ¼ “480�800 pixel”g

fUUHg :¼ fUser Time History

¼ “30minutes”;Content Type Seen

¼ “text; image”;Means Of Travel ¼ “walk”g

fUUMg :¼ fLocation ¼ “Home”; Location Coordinate

¼ “x; y”;Demographic age ¼ “52”;Demographic edu

¼ “no”; g

6. Simulation and results

In this section, we describe the simulation environment which
has been used to test our proposed architecture. We considered an
IoT tourist guide system as a use case scenario and evaluated the
obtained results. Fig. 4 shows the target simulation environment.

6.1. Evaluation setup

To provide the relevant services efficiently to the end users, the
most important metrics are precision and recall, thus we focus our
evaluation process around these two metrics. The precision used in
our measurements is defined as the relevant services among the
retrieved services, while recall is the fraction of relevant services
that have been retrieved from the existing relevant services. We
also consider the processing time to generate the query and to fetch
the information as the evaluation metric. We carried out the sim-
ulations on Windows Operating System of version 1709 (OS Build
16299.19) on Intel(R) Core(TM)i7-7700K CPU @ 4.20 GHz with
32 GB RAM. The evaluation programs was written in Matlab 2017b.
In this simulation, we have considered 12 different types for
Fig. 4. The simulatio
queries, which includes history of the location, climate, trans-
portation means (bus, train, air), tourist spots, and educational in-
stitutes. We have used five types of IoT services that includes IoT
Health-care, transportation, learning, museum, and tourist ser-
vices, and we considered 15000 service providers for providing
information about different kinds of services. Finally, for each
evaluation, confidence interval level (i.e., 98%) is determined but
not included in this paper due to their lower significance values.

An IoT tourist application, which automatically generates the
queries on behalf of the user and fetches information from service
providers has been activated. For query formation and service
provision alongwith context information like time and location, we
have also considered three profile information (age, education
level, and economical status). The users are classified into four
types based on their age and salary. Similarly, the users are classi-
fied based on their educational qualification as well, i.e., basic ed-
ucation, school children, college students, and professionals. As the
users move in different areas, their context information is collected
and stored in a database. The context and profile information of the
user and query logs are used to generate the current query
automatically.

As there was no dataset which could give us the query logs
required for our simulation work, we have synthesized the query
logs for the automatic query generation and web service selection
for the users. The synthesized data includes a number of different
types of queries (for history and climate) generated for particular
area at different time instances.

Fig. 5 shows the different type of queries generated by the users
in the past in a particular area at different time instances. The x axis
shows the time (in second), and the y axis shows the number of
type of queries generated, respectively. Fig. 6 shows the number of
queries generated by the users in the past about the history and
climate at a particular area at different time instances. As it can be
seen from the figures that different number and types of queries are
being generated at each time instance. This data will be used as
synthesized data for our experimentation purposes.

6.2. Results analysis

In our use case, we considered the user as a college student with
moderate income, who starts moving in the area and requires the
tourist information.
n environment.

Fig. 5. Number of types of queries generated by past users.

Fig. 6. Number of historical and climate type queries generated by past users.

S.P. Gochhayat et al. / Journal of Cleaner Production 212 (2019) 1345e13561354
Based on the synthesized data shown in 5 and 6, automatic
queries are generated. As the selected queries depend on the
threshold value set by the designer. We first show how the selected
number of query value depends on the threshold value (more about
it can be found in section 5.2). Fig. 7 shows the number of query
terms selected by the IoT query user model at a particular area at
different time instances. In our work, the aim is not to select only a
specific number of queries, but the most important query terms,
therefore, we set the threshold value as a percentage of the highest
total weight assigned to a term as it is given in the following
equation.
Fig. 7. Number of selected query terms for different threshold values.
querythreshold ¼ p*max
n
totalweightð1Þ totalweightð2Þ;…

o
where p

¼ 50� 90%

(13)

The values in Fig. 7 shows that the number of selected query
terms increases with increase in threshold value, however, the
query terms are lower with lower threshold value, i.e., only the
most important query terms are selected when the threshold is
high. The use of lower threshold results in lower number of services
being offered to the user, thus, it might possible that the users are
not offered some the required services as well. while the higher
threshold value could irritate the users with a lot of unnecessary
services. In case of LISA, we observed that by using the contextual
information the query terms can be significantly decreased even in
when the threshold value is selected higher.

In order to check the importance of the services selected, we
checked the precision and the recall values. As the IoT environ-
ments will be filled with a lots of devices providing different ser-
vices, we decided that the number of services provided will be in
the order of thousand, thus, we selected around 15000 services. We
first observe the precision and recall while considering less number
of services, however, later to observe long-term behavior of the
selection process, we considered more number of services. Figs. 8
and 9 show the precision and recall for 500 and 1500 services.

The precision and the recall values very between 0.3 and 0.7. As
the number of services increases, the values become constant. It is
because our LISA architecture will only allow a specific set of ser-
vices to be pushed towards the users, which will be based on users
current contextual information. Hence, the increase in the different
types of services pushed towards user will become constant after
certain increase in the number of available services. To check the
convergence as well as the scalabilty of our architecture, we also
simulated by considering 15000 services. The result is shown in
Fig. 10. The precision value becomes stable around 0.25 and the
recall around 0.7, which is nearly the same with the results ob-
tained in Figs. 8 and 9. Thus, it shows that LISA achieves desirable
recall and precision evenwith very higher number of services in the
IoT ecosystem. Finally, the processing time of the system versus the
number of services generated in the system is shown in Fig. 11. It
can be seen from Fig. 11 that as predicated the processing time
increases with the number of services. From Fig. 11, we can safely
conclude that in the existing scenario, around 7000 services would
be better for the search and selection of the services without
overwhelming the users.
Fig. 8. The precision and recall for 500 Services.

Fig. 9. The precision and recall for 1500 Services.

Fig. 10. Convergence of the precision and recall value with respect to the number of
services.

Fig. 11. The processing time of the system.

S.P. Gochhayat et al. / Journal of Cleaner Production 212 (2019) 1345e1356 1355
7. Conclusion and future works

In this paper, we proposed an architecture called LISA for
automatic query generation for service selection for IoT push ap-
plications, which helps the IoT computing applications to provide
the user desired services without overwhelming the user with
unnecessary advertisements. To automatically generate the query
on behalf of the user, our model uses contextual information con-
cerning user history, context, and profile information along with
the past queries generated at that location. The web service tech-
nology is used by our system to help the user to get a particular
service without much user intervention. We showed the perfor-
mance of the proposed architecture by simulating the system to
generate the queries for the user and fetching the services
automatically.

For future work, we are working to use several scoring methods
to first score pool terms, and then rank them using new ranking
model. Furthermore, envision the use of fuzzy logic, which can
provide adequate weights for each term. We believe that it can be
useful to select those terms that have high weight for query
expansion and reformulate the query to improve the user context
and provide better results to the users. Finally, we will also explore
distributed trust based push protocol with collusion resistance by
committing the IoT application broadcasters.

Acknowledgement

Mauro Conti is supported by a Marie Curie Fellowship funded by
the European Commission (agreement PCIG11-GA-2012-321980).
This work is also partially supported by the EU TagItSmart! Project
(agreement H2020-ICT30-2015-688061), and the EU-India REACH
Project (agreement ICIþ/2014/342-896).

References

O'Hare, G.M., O'Grady, M.J., 2003. Gulliver's genie: a multi-agent system for ubiq-
uitous and intelligent content delivery. Comput. Commun. 26 (11), 1177e1187.

Aksu, H., Babun, L., Conti, M., Tolomei, G., Uluagac, A.S., 2018. Advertising in the iot
era: vision and challenges. IEEE Commun. Mag. arXiv:1802.04102.

Balke, W.-T., Wagner, M., 2003. Towards Personalized Selection of Web Services,
pp. 20e24.

Bormann, C., Castellani, A.P., Shelby, Z., March 2012. Coap: an application protocol
for billions of tiny internet nodes. IEEE Internet Comput. 16 (2), 62e67. ISSN
1089e7801.

Cao, H., Hu, D.H., Shen, D., Jiang, D., Sun, J.-T., Chen, E., Yang, Q., 2009. Context-aware
Query Classification, pp. 3e10.

Carvalho, A., Cunha, C.R., Morais, E.P., 2010. A Framework to Support the Tourist's
Information-needs Based on a Ubiquitous Approach.

Chen, M., 2013. Towards smart city: M2m communications with software agent
intelligence. Multimed. Tool. Appl. 67 (1), 167e178.

Chen, I.Y., Yang, S.J., Zhang, J., 2006. Ubiquitous Provision of Context Aware Web
Services, pp. 60e68.

Chiu, D.K., Leung, H.-f, 2005. Towards Ubiquitous Tourist Service Coordination and
Integration: a Multi-agent and Semantic Web Approach, pp. 574e581.

Cho, C., Kim, J., Joo, Y., Shin, J., Oct 2016. An approach for coap based notification
service in iot environment. In: 2016 International Conference on Information
and Communication Technology Convergence), pp. 440e445.

Chuang, S.-L., Chien, L.-F., 2003. Automatic query taxonomy generation for infor-
mation retrieval applications. Online Inf. Rev. 27 (4), 243e255.

Conti, M., Kaliyar, P., Remi, C. Lal, 2017. A reliable and secure multicast routing
protocol for iot networks. In: Proceedings of the 12th International Conference
on Availability, Reliability and Security, ARES ’17. ACM, pp. 84:1e84:8. ISBN 978-
1-4503-5257-4.

Doulkeridis, C., Loutas, N., Vazirgiannis, M., 2006. A system architecture for context-
aware service discovery. Electron. Notes Theor. Comput. Sci. 146 (1), 101e116.

Douzis, K., Sotiriadis, S., Petrakis, E.G., Amza, C., 2018. Modular and generic iot
management on the cloud. Future Generat. Comput. Syst. 78, 369e378. ISSN
0167e739X.

Duan, Z., Gopalan, K., Dong, Y., 2005. Push vs. pull: implications of protocol design
on controlling unwanted traffic. In: Proceedings of the Steps to Reducing Un-
wanted Traffic on the Internet, SRUTI’05. USENIX Association, Berkeley, CA, USA,
4e4.

Fortino, G., Guerrieri, A., Russo, W., Savaglio, C., May 2014. Integration of agent-
based and cloud computing for the smart objects-oriented iot. In: Pro-
ceedings of the 2014 IEEE 18th International Conference on Computer Sup-
ported Cooperative Work in Design, pp. 493e498.

Germanakos, P., Mourlas, C., Samaras, G., 2005. A Mobile Agent Approach for
Ubiquitous and Personalized Ehealth Information Systems, pp. 67e70.

Gochhayat, S.P., Pallapa, V., Dec 2015. An efficient qos support for ubiquitous net-
works. IEEE Trans. Emerg. Top. Comput. 3 (4), 524e533. https://doi.org/10.1109/
TETC.2015.2449669. ISSN 2168e6750.

Gudla, S.K., Bose, J., June 2016. Intelligent web push architecture with push flow
control and push continuity. In: 2016 IEEE International Conference on Web
Services (ICWS), pp. 658e661.

Gudla, S.K., Panchamukhi, S.K., Bose, J., Saride, G., Maheshwari, A., Jan 2016.
Seamless push service with flow control for embedded devices. In: 2016 13th
IEEE Annual Consumer Communications Networking Conference (CCNC),
pp. 303e304.

Halder, S., Ghosal, A., Conti, M., May 2018. Limca: an Optimal Clustering Algorithm
for Lifetime Maximization of Internet of Things. Wireless Networks.

Hashemian, S.V., Mavaddat, F., 2005. A Graph-based Approach to Web Services

http://refhub.elsevier.com/S0959-6526(18)33804-6/sref1
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref1
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref1
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref2
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref2
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref3
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref3
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref3
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref4
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref4
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref4
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref4
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref4
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref5
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref5
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref5
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref6
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref6
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref7
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref7
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref7
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref8
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref8
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref8
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref9
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref9
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref9
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref10
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref10
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref10
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref10
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref11
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref11
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref11
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref12
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref12
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref12
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref12
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref12
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref13
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref13
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref13
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref14
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref14
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref14
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref14
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref14
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref15
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref15
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref15
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref15
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref15
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref16
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref16
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref16
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref16
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref16
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref17
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref17
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref17
https://doi.org/10.1109/TETC.2015.2449669
https://doi.org/10.1109/TETC.2015.2449669
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref19
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref19
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref19
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref19
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref20
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref20
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref20
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref20
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref20
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref21
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref21
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref22

S.P. Gochhayat et al. / Journal of Cleaner Production 212 (2019) 1345e13561356
Composition, pp. 183e189.
Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., Alonso-Zarate, J., 2015.

A survey on application layer protocols for the internet of things. Trans. IoT
Cloud Comput. 3 (1), 11e17.

Kenteris, M., Gavalas, D., Economou, D., 2009. An innovative mobile electronic
tourist guide application. Personal Ubiquitous Comput. 13 (2), 103e118.

Kim, H., Lee, E.A., 2017. Authentication and authorization for the internet of things.
IT Professional 19 (5), 27e33. ISSN 1520e9202.

Kim, H.K., Kim, J.K., Ryu, Y.U., 2009. Personalized recommendation over a customer
network for ubiquitous shopping. Servi. Comput. IEEE Trans. 2 (2), 140e151.

Kosuga, M., Kirimoto, N., Yamazaki, T., Nakanishi, T., Masuzaki, M., Hasuike, K., 2002.
A multimedia service composition scheme for ubiquitous networks. J. Netw.
Comput. Appl. 25 (4), 279e293.

Li, Q., Gochhayat, S.P., Conti, M., Energiot, F. Liu, 2017. A solution to improve network
lifetime of iot devices. Pervasive Mob. Comput. 42, 124e133.

Lueg, C., 1998. In: Considering Collaborative Filtering as Groupware: Experiences
and Lessons Learned, vol. 98, p. 16.

Manate, B., Munteanu, V.I., Fortis, T.F., Oct 2013. Towards a scalable multi-agent
architecture for managing iot data. In: 2013 Eighth International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 270e275.

Melucci, M., 2005. Context modeling and discovery using vector space bases. In:
Proceedings of the 14th ACM International Conference on Information and
Knowledge Management. ACM, pp. 808e815.

Melucci, M., White, R.W., 2007. Discovering hidden contextual factors for implicit
feedback. In: Held in Conjunction with the 6 th International and Interdisci-
plinary Conference on Modeling and Using Context, p. 69.

Melucci, M., et al., 2012. Contextual search: a computational framework. Founda-
tions and Trends® in Information Retrieval, pp. 257e405, 6(4e5).

Nayak, R., Lee, B., Nov 2007. Web Service Discovery with Additional Semantics and
Clustering, pp. 555e558.

Nurmi, P., Salden, A., Lau, S.L., Suomela, J., Sutterer, M., Millerat, J., Martin, M.,
Lagerspetz, E., Poortinga, R., 2006. A System for Context-dependent User
Modeling, pp. 1894e1903.
Recker, M.M., Walker, A., Lawless, K., 2003. What do you recommend? imple-
mentation and analyses of collaborative information filtering of web resources
for education. Instr. Sci. 31 (4e5), 299e316.

Rho, S., Chilamkurti, N., Defrawy, K.E., 2013. Agent societies and social networks for
ubiquitous computing. Personal Ubiquitous Comput. 17 (8), 1667e1669.

Roy, J., Ramanujan, A., 2001. Understanding web services. IT Prof. 3 (6), 69e73.
Shankar, P., Ganapathy, V., Iftode, L., 2009. Privately Querying Location-based Ser-

vices with Sybilquery, pp. 31e40.
Shen, X., Zhai, C.X., 2003. Exploiting Query History for Document Ranking in

Interactive Information Retrieval, pp. 377e378.
Sheng, Q.Z., Benatallah Contextuml, B., 2005. A Uml-based Modeling Language for

Model-driven Development of Context-aware Web Services, pp. 206e212.
Silver, G., Maduko, A., Jafri, R., Miller, J.A., Sheth, A.P., 2003. Modeling and Simula-

tion of Quality of Service for Composite Web Services.
Sim, K.M., 2012. Agent-based cloud computing. Serv. Comput. IEEE Trans. 5 (4),

564e577.
Singh, J., Prasad, M., Daraghmi, Y.A., Tiwari, P., Yadav, P., Bharill, N., Pratama, M.,

Saxena, A., 2017. Fuzzy logic hybrid model with semantic filtering approach for
pseudo relevance feedback-based query expansion. In: Computational Intelli-
gence (SSCI), 2017 IEEE Symposium Series on. IEEE, pp. 1e7.

Staab, S., Van der Aalst, W., Benjamins, V.R., Sheth, A., Miller, J.A., Bussler, C.,
Maedche, A., Fensel, D., Gannon, D., 2003. Web services: been there, done that?
intelligent systems. IEEE 18 (1), 72e85.

Xu, X., Bessis, N., Cao, J., 2013. An autonomic agent trust model for iot systems.
Procedia Comput. Sci. 21, 107e113. ISSN 1877e0509.

Xue, X., Croft, W.B., 2009. Automatic Query Generation for Patent Search,
pp. 2037e2040.

Yang, S.J., Zhang, J., Chen, I.Y., 2008. A jess-enabled context elicitation system for
providing context-aware web services. Expert Syst. Appl. 34 (4), 2254e2266.

Yu, C.-M., Gochhayat, S.P., Conti, M., Lu, C.-S., 2018. Privacy aware data deduplication
for side channel in cloud storage. IEEE Trans. Cloud Comput. (1) 1e1.

Zhou, J., Cao, Z., Dong, X., Vasilakos, A.V., 2017. Security and privacy for cloud-based
iot: challenges. IEEE Commun. Mag. 55 (1), 26e33.

http://refhub.elsevier.com/S0959-6526(18)33804-6/sref22
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref22
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref23
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref23
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref23
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref23
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref24
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref24
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref24
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref25
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref25
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref25
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref25
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref26
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref26
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref26
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref27
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref27
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref27
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref27
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref28
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref28
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref28
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref29
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref29
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref30
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref30
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref30
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref30
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref31
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref31
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref31
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref31
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref32
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref32
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref32
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref33
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref33
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref33
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref33
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref34
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref34
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref34
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref35
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref35
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref35
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref35
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref36
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref36
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref36
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref36
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref36
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref37
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref37
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref37
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref38
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref38
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref39
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref39
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref39
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref40
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref40
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref40
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref41
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref41
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref41
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref42
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref42
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref43
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref43
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref43
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref44
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref44
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref44
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref44
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref44
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref45
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref45
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref45
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref45
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref46
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref46
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref46
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref46
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref47
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref47
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref47
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref48
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref48
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref48
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref49
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref49
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref49
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref50
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref50
http://refhub.elsevier.com/S0959-6526(18)33804-6/sref50

	LISA: Lightweight context-aware IoT service architecture
	1. Introduction
	1.1. Contribution
	1.2. Organization

	2. Related works
	3. Terminologies
	3.1. IoT application
	3.2. IoT user query
	3.3. IoT user model
	3.4. Web services
	3.5. Agents

	4. LISA: proposed IoT service architecture
	5. IoT user query generation model
	5.1. IoT Query Initiator
	5.2. Query terms selection
	5.3. Formation of IoT query

	6. Simulation and results
	6.1. Evaluation setup
	6.2. Results analysis

	7. Conclusion and future works
	Acknowledgement
	References

