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Abstract
In image-based medical decision-making, different modalities of medical images of a given organ of a patient are captured.

Each of these images will represent a modality that will render the examined organ differently, leading to different

observations of a given phenomenon (such as stroke). The accurate analysis of each of these modalities promotes the

detection of more appropriate medical decisions. Multimodal medical imaging is a research field that consists in the

development of robust algorithms that can enable the fusion of image information acquired by different sets of modalities.

In this paper, a novel multimodal medical image fusion algorithm is proposed for a wide range of medical diagnostic

problems. It is based on the application of a boundary measured pulse-coupled neural network fusion strategy and an

energy attribute fusion strategy in a non-subsampled shearlet transform domain. Our algorithm was validated in dataset

with modalities of several diseases, namely glioma, Alzheimer’s, and metastatic bronchogenic carcinoma, which contain

more than 100 image pairs. Qualitative and quantitative evaluation verifies that the proposed algorithm outperforms most

of the current algorithms, providing important ideas for medical diagnosis.

Keywords Multimodal medical imaging � Medical image fusion � Pulse-coupled neural network � Non-subsampled shearlet

transform

1 Introduction

Multimodal medical imaging is a research field that has

been getting increasing attention in the scientific commu-

nity in the last few years, specially due to its significance in

medical diagnosis, computer vision, and internet of things

[3, 5, 15, 20, 28, 31, 32, 35]. Defined as the simultaneous

production of signals belonging to different medical

imaging techniques, one of the biggest challenges in this

research field is how to combine (or fuse) in an effective

and optimal way multimodal medical imaging sensors,

such as positron emission tomography (PET), single-pho-

ton emission computed tomography (SPECT), and mag-

netic resonance imaging (MRI). This image fusion process

comprises many techniques and research areas, ranging

from image processing techniques, computer vision to

pattern recognition, with the goal of promoting more

accurate medical diagnosis and more effective medical

decision-making [8, 10, 18, 26, 45].
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1.1 Current challenges in multimodal image
fusion

Image fusion can usually be divided into three levels:

pixel-level, feature-level, and decision level

[21, 31, 42–44, 47]. Since the aim is to fuse pixel infor-

mation from source images, medical image fusion belongs

to the pixel-level.

Multi-scale transform (MST) method is one of the most

famous categories [40]. Commonly, the MST fusion

methods consist of three steps. First, the source images are

transformed into MST domain. Then, the parameters in

different scales merged in light of a specific fusion strat-

egy. Finally, the fused image is reconstructed through the

corresponding inverse transform. The MST methods

mainly contain the Laplacian pyramid (LP) [6], the wavelet

transform (WT) [27, 34], the non-subsampled contourlet

transform (NSCT) [49], and the non-subsampled shearlet

transform (NSST) [4, 23, 38]. However, if the MST method

performs without other fusion measures, some unexpected

block effect may appear [39].

To overcome this disadvantage, some fusion measures

are applied in the MST method. For instance, spatial fre-

quency (SF), local variance (LV), the energy of image

gradient (EIG) and sum-modified-Laplacian (SML) are

commonly used as fusion measures [17, 41]. However,

most of these measures are acquired in the spatial domain

or low-order gradient domain, which means the fusion map

may not be always precise. This imprecision may lead to

blocking artefacts.

Except for traditional MST methods, the edge-preserv-

ing filtering (EPF)-based MST decomposition method are

also commonly used. In the EPF-MST methods, Gaussian

filtering and EPF are used to decompose the input image

into two scale-layers and one base layer. Then, three layers

are fused based on suitable fusion strategies. Finally, the

fused image is reproduced by a reconstruction algorithm.

The EPF-MST methods contain bilateral filtering (BF)-

based [51], curvature filtering (CF)-based [40], and co-

occurrence filtering (CoF)-based [37] methods.

1.2 A pulse-coupled neural network model
for medical image fusion

To overcome this challenge, a method called pulse-coupled

neural network (PCNN) has been proposed in the literature

[46]. This method was initially proposed to emulate the

underlying mechanisms of a cat’s visual cortex and became

later an essential method in image processing [29]. Kong

et al. presented an SF modulated PCNN fusion strategy in

NSST domain with the solution of infrared and visible

image fusion [19]. Inspired by this kind of fusion measure

modulated by the PCNN model, one interesting research

path would be a solution to a new measure to modulate

PCNN in the medical image fusion field.

To further improve the fusion quality of medical images,

we propose a medical image fusion method based on

boundary measure modulated by a pulse-coupled neural

network in the non-subsampled shearlet domain. Firstly,

the source images are transformed into the NSST domain

with low-frequency bands and high-frequency bands. Then,

the low-frequency bands are merged through an energy

attribute-based fusion strategy, and the high-frequency

bands are merged through a boundary measure modulated

PCNN strategy. Finally, the fused image is reconstructed

by combining the inverse NSST. We evaluate the proposed

algorithm by comparing its performance with several

existing methods using both a quantitative and qualitative

evaluation. Experimental results demonstrate that the pro-

posed method performs better than most of the existing

fusion methods.

1.3 Contribution

The main contributions of the proposed research article are

the following:

1. A medical image fusion framework based on boundary

measured PCNN in NSST domain, which can complete

the fusion task effectively;

2. The application of a boundary measured PCNN model

for high-frequency bands. In this method, the gradient

information of the image can be easily extracted, and

the size of the structure can be changed to adapt to the

scale of structure;

3. The application of an energy attribute-based fusion

strategy to low-frequency bands.

Experiments conducted in this research paper suggest

that the proposed boundary measured PCNN-NSST

achieves the best performance in most cases in qualitative

and quantitative when compared to other state-of-the-art

image fusion techniques.

1.4 Organization

The rest of this paper is organized as follows. In Sect. 2, it

is presented the most significant works in the image fusion

domain. In Sect. 3, the proposed fusion method BM-

PCNN-NSST is described. In Sect. 4, it is presented the set

of experiments that were performed to evaluate the pro-

posed algorithm. Finally, in Sect. 5, the main conclusions

of this research work are presented.
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2 Related work

In this section, we present an overview of the most sig-

nificant image fusion algorithms in the literature, namely

the non-subsampled shearlet transform (Sect. 2.1), the

multi-scale morphological gradient (Sect. 2.2), and the

pulse-coupled neural network (Sect. 2.3).

2.1 Non-subsampled shearlet transform

The non-sampled shearlet transform is an image fusion

method, originally proposed by Easley [13]. It consists in

combining the non-subsampled pyramid transform with

different shearing filters, and it has the characteristics of

multi-scale and multi-directionality. The non-subsampled

pyramid transform makes it invariant, which is superior

than the LP, and WT methods. Additionally, since the size

of the shearing filter is smaller than the directional filter,

NSST can represent smaller scales, which makes it better

than NSCT.

Given the superiority of its underlying functions, NSST

performs better than most commonly used MST. It is

therefore widely used in the field of image denoising [36]

and image fusion [22].

The NSST model can be described as follows. For the

case, n = 2, the shearlet function is satisfied

XAB wð Þ ¼ wi;j;k xð Þ ¼ detAj jj=2w BlA jx� k
� �

; j; l 2 Z2
n o

ð1Þ

where w 2 L2(R2), both A and B are invertible matrices

with size 2 9 2, and detBj j ¼ 1. For instance, A and B can

be represented as

A ¼ 4 0

0 2

� �
; B ¼ 1 1

0 1

� �
ð2Þ

In this situation, the tiling of the frequency plane of

NSST is shown in Fig. 1 It can be seen that (a) represents

the decomposition, and (b) represents the size of the fre-

quency support of the shearlet element wi;l;k.

For convenience, two related functions are used to

represent the NSST and the inverse NSST

Ln;Hnf g ¼ nsst de Iinð Þ ð3Þ
Ire ¼ nsst re Ln;Hnð Þ ð4Þ

where nsst de �ð Þ represents the NSST decomposition

function for the input image Iin, and nsst re �ð Þ represents

the NSST reconstruction steps for the reconstructed image

Ire. The parameters Ln and Hn represent low-frequency sub-

bands and high-frequency sub-bands, respectively.

2.2 Multi-scale morphological gradient

Multi-scale morphological gradient (MSMG) is an effec-

tive operator which extracts gradient information from an

image in order to indicate the contrast intensity in the close

neighborhood of a pixel in the image. For this reason,

MSMG is a method that is highly efficient and used in edge

detection and image segmentation. In image fusion,

MSMG has been used as a type of focus measure in multi-

focus image fusion [50]. The specific details of MSMG are

as follows.

A multi-scale structuring element is defined as

SEj ¼ SE1 � SE1 � � � � � SE1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
j

; j 2 1; 2; . . .;Nf g ð5Þ

where SE1 denotes a basic structure element, and t repre-

sents the number of scales.

The gradient feature Gt can be represented by the

morphological gradient operators from the image f.

Gt x; yð Þ ¼ f x; yð Þ � SEt � f x; yð Þ � SEt ð6Þ

where � and � denote the morphological dilation and

erosion operators, respectively. x; yð Þ denotes the pixel

coordinate.

From the multi-scale structuring element and the gra-

dient feature, then one can obtain the MSMG by computing

the weighted sum of gradients over all scales.

M x; yð Þ ¼
XN

t¼1

wt � Gt x; yð Þ ð7Þ

where wt represents the weight of gradient in t-th scale, and

it can be represented as

wt ¼
1

2t þ 1
ð8Þ

Figure 2 shows an example of MSMG. One can see that the

boundary information of the images has been well extrac-

ted, which demonstrates the effectiveness of the boundary

measure.

2.3 Pulse-coupled neural network

As the third-generation artificial neural network, PCNN has

achieved great success in the image fusion field. A PCNN

model often contains three parts: the receptive field, the

modulation field and the pulse generator. The expressions

of a simplified dual-channel PCNN model can be defined

as

F1
ij kð Þ ¼ S1ij kð Þ ð9Þ

F2
ij kð Þ ¼ S2ij kð Þ ð10Þ
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Lij kð Þ ¼
1; if

P

r;t2S
Yrt k � 1ð Þ[ 0

0; otherwise

(

ð11Þ

Uij kð Þ ¼ max F1
ij kð Þ 1þ b1ijLij kð Þ

� �
;F2

ij kð Þ 1þ b2ijLij kð Þ
� �n o

ð12Þ

Yij kð Þ ¼ 1; if Uij kð Þ� hij k � 1ð Þ
0; otherwise

	
ð13Þ

hij kð Þ ¼ hij k � 1ð Þ � Dþ VhYij kð Þ ð14Þ

Tij ¼
k; if Uij kð Þ� hij k � 1ð Þ
Tij k � 1ð Þ; otherwise

	
ð15Þ

As is shown in Fig. 3, S1ij and S2ij denote the pixel value

of two input images at point i; jð Þ in the neural network; Lij

represents the linking parameter; b1ij and b2ij denote the

linking strength; F1
ij and F2

ij represent the feedback of

inputs. Uij is the output of the dual-channel. hij is the

threshold of step function, de is the declining extent of the

threshold, Vh decides the threshold of the active neurons,

and Tij is the parameter to determine the number of itera-

tions. Yij kð Þ is the k-th output of PCNN.

3 A Bounded measured PCNN in NSST
domain algorithm

In this section, we present the proposed algorithm for

multimodal medical image fusion: a bounded measured

PCNN approach in the NSST domain (BM-PCNN-NSST).

The framework of the proposed algorithm is illustrated in

Fig. 4. The fusion algorithm consists in four parts: the

NSST decomposition, the low-frequency fusion, the high-

frequency fusion, and the NSST reconstruction.

The algorithm starts with a pseudocolor image source A

which contains three-bands (PET/SPECT image). The first

step is to apply an intensity-hue-saturation (IHS) transform

in A, which will result in a pair containing the intensity

image IA and a source image B. After performing the fusion

Fig. 1 The structure of the

frequency tiling

Fig. 2 An example of MSMG
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of this image pair, an inverse IHS transform is applied in

order to obtain the final fused image.

3.1 NSST decomposition

An N-level NSST decomposition is performed on images

IA and B to acquire the decomposition bands LA, H
l;k
A and

LB, H
l;k
B based on Eq (3), where L denotes low-frequency

sub-bands and Hl;k represents high-frequency sub-bands at

level l with direction k.

LA;H
l;k
A

n o
¼ nsst de Að Þ ð16Þ

LB;H
l;k
B

n o
¼ nsst de Bð Þ ð17Þ

Fig. 3 Classical PCNN model

Fig. 4 Framework of the proposed algorithm
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Fig. 5 One set of glioma

disease MRI and PET image

fusion results. a MRI; b PET;

c CNN; d CSMCA; e LLF-IOI;

f NFA; g NSST-PAPCNN;

h PC-LLE-NSCT; i PSF;
j Proposed

Fig. 6 One set of glioma

disease MRI and SPECT image

fusion results. aMRI; b SPECT;

c CNN; d CSMCA; e LLF-IOI;

f NFA; g NSST-PAPCNN;

h PC-LLE-NSCT; i PSF;
j Proposed
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Fig. 7 One set of mild

Alzheimer’s disease MRI and

PET image fusion results.

a MRI; b PET; c CNN;

d CSMCA; e LLF-IOI; f NFA;
g NSST-PAPCNN; h PC-LLE-

NSCT; i PSF; j Proposed

Fig. 8 One set of metastatic

bronchogenic carcinoma MRI

and SPECT image fusion

results. a MRI; b SPECT;

c CNN; d CSMCA; e LLF-IOI;

(f) NFA; g NSST-PAPCNN;

h PC-LLE-NSCT; i PSF;
j Proposed
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Fig. 9 One set of hypertensive

encephalopathy MRI and

SPECT image fusion results.

a MRI; b SPECT; c CNN;

d CSMCA; e LLF-IOI; f NFA;
g NSST-PAPCNN; h PC-LLE-

NSCT; i PSF; j Proposed

Fig. 10 One set of motor

neuron disease MRI and SPECT

image fusion results. a MRI;

b SPECT; c CNN; d CSMCA;

e LLF-IOI; f NFA; g NSST-

PAPCNN; h PC-LLE-NSCT;

i PSF; j Proposed
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Fig. 11 One set of normal aging

MRI and SPECT image fusion

results. a MRI; b SPECT;

c CNN; d CSMCA; e LLF-IOI;

(f) NFA; g NSST-PAPCNN;

h PC-LLE-NSCT; i PSF;
j Proposed

Table 1 Mean quality of glioma disease (30 image pairs of MRI-

PET)

EN SD NMI SS VIF

CNN 3.4365 54.9628 0.7288 0.7149 0.4732

CSMCA 3.4309 55.2631 0.7291 0.7265 0.4673

LLF-IOI 3.3015 50.0933 0.6648 0.6827 0.4274

NFA 3.3876 53.5912 0.6951 0.7104 0.4633

NSST-PAPCNN 3.3981 54.1147 0.6964 0.7018 0.4430

PC-LLE-NSCT 3.4058 54.3635 0.7009 0.7087 0.4613

PSF 3.2162 50.6057 0.6726 0.6895 0.4284

Proposed 3.4316 55.1167 0.7321 0.7289 0.4704

Table 2 Mean quality of glioma disease (13 image pairs of MRI-

SPECT)

EN SD NMI SS VIF

CNN 4.0332 60.1184 0.7198 0.4215 0.2813

CSMCA 4.1269 59.9960 0.7134 0.4316 0.2894

LLF-IOI 3.7614 56.9402 0.6867 0.4192 0.2590

NFA 3.9186 58.2348 0.6719 0.3932 0.2418

NSST-PAPCNN 4.0627 58.6948 0.6879 0.4183 0.2635

PC-LLE-NSCT 4.0558 59.6137 0.6942 0.4339 0.2759

PSF 4.0186 57.0918 0.6751 0.4140 0.2667

Proposed 4.1227 60.0368 0.7229 0.4481 0.2970

Table 3 Mean quality of mild Alzheimer’s disease (10 image pairs of

MRI-PET)

EN SD NMI SS VIF

CNN 3.4810 67.2903 0.8468 0.6332 0.2894

CSMCA 3.5207 68.0381 0.8537 0.6356 0.2618

LLF-IOI 3.5094 67.7324 0.8471 0.6271 0.2579

NFA 3.4356 65.3818 0.8326 0.6117 0.2360

NSST-PAPCNN 3.5614 67.9053 0.8441 0.6327 0.2617

PC-LLE-NSCT 3.4709 65.4932 0.8204 0.6268 0.2781

PSF 3.3790 66.9214 0.8306 0.6208 0.2615

Proposed 3.5530 68.2571 0.8524 0.6447 0.2887

Table 4 Mean quality of metastatic bronchogenic carcinoma (11

image pairs of MRI-SPECT)

EN SD NMI SS VIF

CNN 4.5680 65.0373 0.9416 0.6261 0.4427

CSMCA 4.5361 64.1775 0.9328 0.6208 0.4358

LLF-IOI 4.4303 60.1125 0.9154 0.6027 0.4247

NFA 4.6005 64.5230 0.9428 0.6207 0.4461

NSST-PAPCNN 4.6179 64.6127 0.9314 0.6178 0.4408

PC-LLE-NSCT 4.5868 64.1052 0.9470 0.6206 0.4391

PSF 4.4291 63.1609 0.9162 0.6014 0.4108

Proposed 4.6160 65.0717 0.9511 0.6239 0.4508
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3.2 Low-frequency fusion

The low-frequency sub-band contains most information of

the source images (texture structure and background). In

this paper, an energy attribute (EA) fusion strategy is

presented in the low-frequency fusion. This EA fusion

strategy is divided into three steps:

1. The intrinsic property values of the low-frequency sub-

band are computed as

IPA ¼ lA þMeA ð18Þ

IPB ¼ lB þMeB ð19Þ

where l and Me represent the mean value and the

median value of LA and LB, respectively.

2. The EA function EA and EB are calculated by

EA x; yð Þ ¼ exp a LA x; yð Þ � IPAj jð Þ ð20Þ

EB x; yð Þ ¼ exp a LB x; yð Þ � IPBj jð Þ ð21Þ

where exp a LA x; y� IPAð Þj jð Þ represents the exponen-

tial operator, and a denotes the modulation parameter.

2. The fused low-frequency sub-band is obtained by a

weighted mean

LF x; yð Þ ¼ EA x; yð Þ � LA x; yð Þ þ EB x; yð Þ � LB x; yð Þ
EA x; yð Þ þ EB x; yð Þ

ð22Þ

3.3 High-frequency fusion

While low-frequency sub-band contains most information

about the source images (such as background and texture),

high-frequency sub-bands contain more information about

details in images (for example, pixel-level information).

Since in the PCNN model one pixel corresponds to one

neuron, it is suitable to use PCNN in high-frequency sub-

bands. In addition, modulating PCNN with MSMG can

increase the spatial correlation in the image. Therefore, the

MSMG operator can be used to adjust the linking strength

between b1ij and b2ij

bAij ¼ MA ð23Þ

bBij ¼ MB ð24Þ

where MA and MB are computed by Eq. (7).

The high-frequency sub-bands are merged based on this

MSMG-PCNN model until all neurons are activated (equal

to 1). The fused high-frequency sub-bands can be obtained

by

Hl;k
F x; yð Þ ¼ Hl;k

A x; yð Þ; if Txy;A � Txy;B;

Hl;k
B x; yð Þ; otherwise:

	
ð25Þ

where Txy;A and Txy;B can be computed using Eq (15).

Table 5 Mean quality of hypertensive encephalopathy (10 image

pairs of MRI-SPECT)

EN SD NMI SS VIF

CNN 4.6866 59.0718 0.9365 0.6651 0.4612

CSMCA 4.8576 56.3227 0.9419 0.6734 0.4590

LLF-IOI 4.4054 53.8491 0.9056 0.6417 0.4334

NFA 4.5782 54.2814 0.9146 0.6558 0.4487

NSST-PAPCNN 4.6930 56.7419 0.9468 0.6718 0.4651

PC-LLE-NSCT 4.6026 55.9921 0.9367 0.6648 0.4587

PSF 4.5124 54.6234 0.9263 0.6486 0.4475

Proposed 4.8521 58.8718 0.9594 0.6974 0.4628

Table 6 Mean quality of motor neuron disease (11 image pairs of

MRI-SPECT)

EN SD NMI SS VIF

CNN 4.3413 48.6742 0.8965 0.6538 0.3761

CSMCA 4.4647 49.6958 0.8697 0.6712 0.3746

LLF-IOI 4.1829 45.4876 0.8307 0.6352 0.3458

NFA 4.4535 46.3916 0.8615 0.6457 0.3548

NSST-PAPCNN 4.5036 48.2961 0.8365 0.6592 0.3719

PC-LLE-NSCT 4.4608 50.8289 0.8756 0.6437 0.3629

PSF 4.3062 46.3109 0.8417 0.6316 0.3418

Proposed 4.5085 50.7957 0.8904 0.6672 0.3820

Table 7 Mean quality of normal aging (16 image pairs of MRI-

SPECT)

EN SD NMI SS VIF

CNN 4.2768 50.2328 0.9027 0.5843 0.4748

CSMCA 4.1545 51.6948 0.9209 0.5964 0.4602

LLF-IOI 4.0341 48.6309 0.8981 0.5612 0.4473

NFA 4.1948 49.1654 0.9035 0.5741 0.4589

NSST-PAPCNN 4.2876 51.5940 0.9227 0.6093 0.4618

PC-LLE-NSCT 4.1349 50.2568 0.9141 0.6024 0.4538

PSF 4.0612 49.5587 0.8861 0.5714 0.4429

Proposed 4.3342 52.1836 0.9174 0.6180 0.4731
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3.4 NSST reconstruction

The fused image F is reconstructed by LF and Hl;k
F through

the inverse NSST according to Eq (4)

F ¼ nsst re LF ;H
l;k
F

� �
ð26Þ

4 Experiments

To validate the proposed algorithm, a set of experiments

was made using three datasets representing different dis-

eases: (1) glioma, (2) mild Alzheimer’s, and (3) hyper-

tensive encephalopathy. The proposed algorithm was

compared with seven state-of-the-art image fusion meth-

ods. Qualitative and quantitative analyses were made to

assess its performance. The code of the paper is made

available.1

4.1 Datasets

To verify the proposed algorithm, more than 100 pairs of

multimodal medical images were used, including 30 image

pairs of MRI-PET and 13 image pairs of MRI-SPECT of

glioma disease, 10 image pairs of MRI-PET of mild Alz-

heimer’s disease, 11 image pairs of MRI-SPECT of

Metastatic bronchogenic carcinoma, 10 image pairs of

MRI-SPECT of hypertensive encephalopathy, 11 image

pairs of MRI-SPECT of motor neuron disease, and 16

image pairs of MRI-SPECT of normal aging. All the image

pairs can be downloaded from the Whole Brain Atlas

dataset [1]. All the pairs have been perfectly registered, and

the size of all images is 256 9 256.

4.2 Comparison methods

The proposed BM-PCNN-NSST algorithm is compared

with seven state-of-the-art fusion methods. There methods

are the convolutional neural network (CNN) [ [24], [53] ],

the convolutional sparsity-based morphological component

analysis (CSMCA) [25], the information of interest in local

Laplacian filtering domain (LLF-IOI) [11], the neuro-fuzzy

approach (NFA) [9], the parameter-adaptive PCNN in

NSST domain (NSST-PAPCNN) [48], the phase congru-

ency and local Laplacian energy in NSCT domain (PC-

LLE-NSCT) [52], and the parallel saliency features (PSF)

[12]. These methods are recently proposed fusion methods.

The parameters that we used in our experiments are the

same as in their papers.

4.3 Parameter settings

In the proposed BM-PCNN-NSST algorithm, the following

parameters were used:

• the NSST decomposition level N is set to 4;

• the number of directions in each level is set to

16,16,8,8;

• the modulation parameter is set to 4;

• the scales number of MSMG operator t is set to 3.

4.4 Evaluation metrics

To analyze the performance of the proposed algorithm in a

quantitative way, we evaluate the different fusion methods

using five metrics: entropy (EN), standard deviation (SD),

normalized mutual information (NMI) [14], Piella’s

structure similarity (SS) [33], and visual information fide-

lity (VIF) [16]. In general, both SD and EN can measure

the amount of information of the fused image. NMI eval-

uates the amount of information transferred from the

source images to fused image. SS mainly evaluates the

structure similarity between source images and fused

image. VIF evaluates the visual information fidelity

between the source images and fused image. More detailed

information about these evaluation metrics can be found on

the references related to each fusion method.

4.5 Experimental results

The results of medical image fusion cannot be completely

dependent on visual effects evaluation. As long as the

feature information is not lost, the medical diagnosis will

not be misjudged because of this, and the visual effect will

be acceptable. Therefore, in this paper, each disease

demonstrates a set of experimental results, which is shown

in Figs. 5, 6, 7, 8, 9, 10, and 11. Different methods have

different visual effects, but the feature information does not

seem to be lost. Therefore, objective evaluation indicators

are needed for a further quantitative evaluation.

The mean value of each metrics of different fusion

methods is listed in Tables 1, 2, 3, 4, 5, 6 and 7. Each

column represents the same metrics for different methods.

The highest value is shown in bold, while the second

highest in italic. It can be seen that the proposed method

performs the best in half of the cases. Even if it is not the

highest value in one column, it is still the second highest

value, except in the NMI of the normal aging case.

1 https://github.com/WeiTan1992?tab=repositories.
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5 Conclusion

In this paper, a multimodal medical image fusion algorithm

is proposed based on boundary measured PCNN and EA

fusion strategies in NSST domain. The main advantage of

the proposed algorithm is that the two fusion strategies are

suitable for different scales. Decomposing images into

different scales with NSST can give full play to the

advantages of the two fusion strategies. Meanwhile, as an

excellent decomposition method, NSST can well blend the

differences of multimodal medical images. The perfor-

mance of the proposed algorithm has been verified in

public datasets, which represents it has reached state-of-

the-art level. One of the important outcomes of this paper is

reported in ‘‘Appendix,’’ which showed the experimental

performance of different values of a and t. One can see that

when a = 4 and t = 3 the performance is the best in most

cases. Since the deep learning technology has been widely

used, in the future research, we will focus on the deep

learning method in multimodal medical image fusion

[2, 7, 30].
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Appendix

Figures 12, 13, 14, 15, 16, 17, and 18 show the experi-

mental performance of different a and t. One can see that

when a = 4, t = 3, the performance is the best in most

cases.
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Fig. 12 Glioma disease (MRI-PET). a t–EN; b t–SD; c t–NMI; d t–SS; e t–VIF
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Fig. 13 Glioma disease (MRI-SPECT). a t–EN; b t–SD; c t–NMI; d t–SS; e t–VIF
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Fig. 14 Mild Alzheimer’s disease (MRI-PET). a t–EN; b t–SD; c t–NMI; d t–SS; e t–VIF
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Fig. 15 Metastatic bronchogenic carcinoma (MRI-SPECT). a t–EN; b t–SD; c t–NMI; d t–SS; (e) t–VIF
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Fig. 16 Hypertensive encephalopathy (MRI-SPECT). a t–EN; b t–SD; c t–NMI; d t–SS; e t–VIF
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Fig. 17 Motor neuron disease (MRI-SPECT). a t–EN; b t–SD; c t–NMI; d t–SS; e t–VIF
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Fig. 18 Normal aging (MRI-SPECT). a t–EN; b t–SD; c t–NMI; d t–SS; e t–VIF
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