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ABSTRACT Machine Learning classification models learn the relation between input as features and output
as a class in order to predict the class for the new given input. Several research works have demonstrated the
effectiveness of machine learning algorithms but the state-of-the-art algorithms are based on the classical
theories of probability and logic. Quantum Mechanics (QM) has already shown its effectiveness in many
fields and researchers have proposed several interesting results which cannot be obtained through classical
theory. In recent years, researchers have been trying to investigate whether the QM can help to improve the
classical machine learning algorithms. It is believed that the theory of QM may also inspire an effective
algorithm if it is implemented properly. From this inspiration, we propose the quantum-inspired binary
classifier, which is based on quantum detection theory. We used text corpora and image corpora to explore
the effect of our proposed model. Our proposed model outperforms the state-of-the-art models in terms
of precision, recall, and F-measure for several topics (categories) in the 20 newsgroup text corpora. Our
proposed model outperformed all the baselines in terms of recall when the MNIST handwritten image
dataset was used; F-measure is also higher for most of the categories and precision is also higher for some
categories. Our proposed model suggests that binary classification effectiveness can be achieved by using
quantum detection theory. In particular, we found that our Quantum-Inspired Binary Classifier can increase
the precision, recall, and F-measure of classification where the state-of-the-art methods cannot.

INDEX TERMS Binary classification, quantum mechanics, signal detection.

I. INTRODUCTION
In the 16th century, Johannes Kepler used the data collected
for analysis purposes by Brahe and Copernicus in order to
explore unrevealed patterns: the rotation of planets around
the Sun at one focus of an ellipse [1]. The unrevealed patterns
from astronomical data gave rise to some mathematical mod-
els such as the Gradient Descent algorithm to find out optimal
points [2], Laplace’s Equation for least square fitting [3],
Gauss-Newton’s algorithm for solving linear equations [4]
and Lagrange’s method for the polynomial interpolations [5].
Late 19th and 20th centuries gave rise to a wider range of
mathematical methods for mining the unrevealed patterns
from the data and their root can be found to the beginning
of artificial intelligence and artificial neural network research
in 1950s [6], [7]. In the 21st century, Machine Learning (ML)
is a subpart of Artificial Intelligence where automated algo-
rithms learn from the data [8]. Generally, there are two kinds
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of ML tasks, i.e. the supervised tasks and the unsupervised
tasks. Classification is a key supervised task in data mining,
recommender systems, and Information Retrieval (IR); we
will focus on classification.

Despite its effectiveness in several domains, classification
algorithms are still inadequate in some domains due to the
nature of the data, which may be very heterogeneous, and the
number of features, which may be inadequate. It can be seen
in Figure 5 and 6 that baseline performances are very low in
terms of recall as well as F-measure and precision to some
extent in order to support the inadequacy of existing clas-
sification models. Since the data is growing exponentially,
the need for algorithms that are more advanced than the state
of the art is also growing. As an alternative to finding other
methods within the classical frameworks, the main objective
of this paper is to replace the classical probability theory
underlying the current state-of-the-art learning algorithms
with the quantum probability theory underlying QM and to
figure out the novel models stemming from QM that cannot
be observed through the lens of classical frameworks. In this
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paper, we designed, implemented and experimented with a
Quantum-Inspired Binary Classifier (QIBC), which is a step
moving from the classical model to quantum inspired models
of classification and then of ML. Firstly, QIBC outperforms
all the baselines in terms of recall for almost all feature
ranges that can be seen in Figure 5 as well as F-measure and
precision for a certain range of features which can be seen
in Figures 6, 7, 8, 9 and 10. Since the dimension of the feature
space is also increasingmonotonically, computation time also
increases with the feature set, which is a big issue. Therefore,
another focus of this paper is the computation time: the QIBC
takes much less time (similar to Naïve Bayes (NB) and
Decision Tree (DT)) to compute the function as compared to
Support Vector Machine (SVM) and k Nearest Neighbours
(KNN) which take a very long time, especially for an image
dataset as can be seen in Figure 11. Our model suggests
that high levels of effectiveness and less computation time
in classification can be achieved by using the theory of QM.
The main motivation of using QM in this paper is to make
use of the superposition state that provides higher degree
of freedom in decision making. The rest of the paper is
organized as follows: Section II presents the literature survey.
A technical background is presented in Section III ; after that
Sections IV and V present the proposed methodology and the
experiments, respectively. Finally, Section VI concludes the
paper by suggesting possible future work.

II. LITERATURE SURVEY
ML is a well-established discipline and a wide catalog of
books is available including, for example [9], [10]. ML clas-
sification is the way to categorize documents; therefore, it is
little surprising that classification in IR can be found dating
back to the seventies. Based on the given set of topic, there
are a number of publications addressing classification with IR
[11]–[16]. Apart from IR, classification is a topic of computer
visionwhere classification is based on contextual information
in the images. ‘‘Contextual’’ information here means there is
a focus on the relationship with the neighborhood pixels [17].

A novel non-parametric estimation model has been pro-
posed, inspired by QM [43]. Each data sample is associated
with its function by kernel density estimation. The probability
density function is computed by taking the sum of all the
kernels in the classical kernel estimation theory. In the quan-
tum estimation theory, every data sample is associated with a
quantum particle which has a radial activation field through-
out it. In QM, the Schroedinger differential equation is uti-
lized to describe the location of the particle using their given
detected energy level. The location of each data sample is
determined and their associated density function is modeled
utilizing the correlation with the quantum potential function.
The kernel scale has been computed from the distribution
of KNN statistics. The local Hessian for finding the modes
in quantum hyperspace is used in order to implement the
proposed model for the purpose of classification. Every mode
is incorporated with a nonparametric class that is explained
by using a region growing model. The proposed model has

been implemented on the artificial dataset as well as for the
topography segmentation from the radar image of terrain.

Since the obtained classification dataset very often consists
of useless and redundant features, feature selections become
important steps in pre-processing the dataset in order to
resolve the classification problem [44]. This kind of issue
is generally resolved by implementing an evolutionary algo-
rithm tominimize the dimensions of the features. The primary
aim is to eliminate the useless features and distinguish the rel-
evant features properly in feature space, which can improve
the classification accuracy. A novel quantum-inspired binary
gravitational search algorithm with the K-nearest neighbor
(QBGSAKNN) model with leave-one-out cross-validation
(LOOCV) has been proposed. The main motivation of this
model is to enhance the classification accuracy with a suitable
feature set in case of binary problems. This model has been
implemented in several UCI machine learning benchmarks in
order to check the performance and obtain high classification
accuracy.

The issue of binary classification has been addressed by
utilizing the quantum-type version of the Nearest Mean Clas-
sifier (NMC) [45]. This proposed model is efficient enough
to be consistently derived to an absolute number of features
and demonstrate the optimal performance measures while
respecting the classical version of NMC for various collec-
tions.Moreover, quantum inspired NMC is not uniform under
re-scaling. The re-scaling factor as a free parameter comes
into play with the re-scaling that might be effective in achiev-
ing additional enhancement in the classification performance
measures.

A novel quantum-inspired evolutionary algorithm with
binary-real representation (QIEABRR) is proposed for the
advancement of the neural network [46]. This QIEABRR
model is the extended version of Quantum-Inspired Evolu-
tionary Algorithm for Numerical Optimization (QIEANO)
[47]. This QIEABRR model is capable of configuring the
feed forward neural network with regards to choosing the
appropriate input variables, quantity of neurons in the hidden
layer and overall extant weights. The QIEABRR model has
been implemented in financial credit evaluations.

The challenges with the state-of-the-art-models such as
the issues with relevance assessment and aboutness were
reviewed and discussed in [21], thus implicating the require-
ment to utilize more than a single ‘‘gold standard’’ method
when estimating retrieval and indexing, and suggesting a new
evaluation model. The model is informed by a methodical
review of the literature on several different evaluation meth-
ods: estimating the quality of indexing by using the gold
standard or by using an evaluator, and estimating the quality
of indexing directly through the retrieval performance.

In contrast to the classical computers that are built on the
physical application of the two different states ′0′ and ′1′,
quantum computers exploit the qubit’s superposition of two
different quantum states |0〉 and |1〉 [22], [23]. In recent years,
researchers have revealed the strength of quantum computers
forML [24], [25]. Information preserved in a quantum system
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is somehow restricted by the laws of QM and it is very chal-
lenging to come up with quantum algorithms that outperform
their classical algorithms [26]. It is necessary to note that the
use of QM suggested in this paper is not about the use of
quantum computers to perform ML tasks.

III. TECHNICAL BACKGROUND
In this section, all the technical concepts are described in
order to understand the proposed QIBC.

A. CLASSIFICATION
ML methods can be supervised or unsupervised. In the case
of supervised tasks (e.g. classification), the input is arranged
as high dimensional feature vectors and are associated with
labels which are given to an algorithm in order to learn how
to relate data to labels and then predict the labels for the new
data. In the case of unsupervised learning, there are no labels
and the algorithm has to cluster the data into several groups.
The main aim of unsupervised algorithms is to compute
distances between the feature vectors in time proportional to
the dimension of the given vectors in the classical models.

The goal of classification is to learn a mapping from
the given input X to the output or target Y , where Y ∈
{0, 1, . . . ,C − 1} and C is the number of classes. If C = 2
then this is known as binary classification where we often
assume Y ∈ {0, 1}. If C > 2 then this is known as multi-class
classification. If the labels are not mutually exclusive then it
is known as multi-label classification.

B. CHI-SQUARE
Feature selection is an essential issue inML. There are several
feature selections available but Chi-square is used in order
to keep the dependency between features and classes. Chi-
square, which is also denoted as χ2, is a statistical method
that is applied to examine the independence of two possible
events, where event A and event B are interpreted to be inde-
pendent if P(A|B) = P(A) and P(B|A) = P(B) or, uniformly
P(AB) = P(A)P(B). χ2 can be calculated as,

χ2
=

n∑
i=1

(OC − EC )2 /EC (1)

where OC is the number of observations in the class C and
EC is the number of expected observations in the class C .
The supervised feature selection method, χ2 which helps to
measure the deviation between observed count and expected
count. If there is dependency between two events, the occur-
rence of a feature can be used to predict the occurrence of
the class. The main aim is to opt for the top features whose
occurrence is more dependent on the occurrence of the class.

If there is independence between two events, the expected
count and observed counts will be closer, which simplymeans
that there will be small χ2 scores. The hypotheses of indepen-
dence is incorrect if the value ofχ2 is high. Themost essential

features which do not fit the expected values well are opted
for in classification; that is, Chi-square is estimated between
every target and feature to opt for the features with the highest
χ2 scores.

C. NAIVE BAYES
Bayes’ theorem presents a way to compute the posterior prob-
ability, P(B|A), from the P(B), P(A) and P(A|B) as follows:

P(B|A) =
P(A|B)P(B)

P(A)
,

where A,B are events of a probability space, the posterior
probability of the target class for the given feature vector is
represented by P(B|A), the prior probability of the target class
is represented by P(B), the likelihood that the feature vector
can be observed in the class is represented by P(A|B) and
the prior probability of the feature vector is represented by
P(A) [27].

The classifier called Naive Bayes assumes that there is
independence among features for each class in order to reduce
the computational burden; this assumption is often known as
the conditional independence of class and can be stated as
follows:

P(A|B) = 5d
i=1P(Ai|B),

where d is the dimension of the feature vector space and Ai
is the i-th feature of vector A ∈ Rd .

D. DECISION TREE
A decision tree (DT) is one of the most popular methods in
ML models. A DT is utilized for both regression as well as
classification. A DT is a tree where each node denotes an
attribute or feature, each link denotes the rule or decision and
each leaf denotes the output whichmay be continuous or have
a categorical value. The main idea is to make a tree for the
whole dataset and process a single output at each leaf. In order
to create the tree, a root node (a feature which better classifies
the training data) is necessary. Information gain is used to
determine the best feature. To explain information gain accu-
rately, entropy is used, which distinguishes the impurity of a
random collection of examples. [28]

EntropyH (S) is the rate of the amount of uncertainty in the
given set S (data):

H (S) =
∑
c∈C

−P(c) log2 P(c), (2)

where S is the dataset for which entropy calculates,C ∈ {0, 1}
is the set of classes in S and P(c) is the ratio of the number of
features in c to the number of features in S.

Information gain IG(S,F) explains to what extent uncer-
tainty in S was lessened after splitting S for feature F :

IG(S,F) = H (S)− H (S,F) (3)
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Alternatively, It can be written as follows:

IG(S,F) = H (S)−
∑
t∈T

P(t)H (t). (4)

where T is the subset from splitting the set, P(t) is the ratio
of the number of features in t to the number of features in S
set and H (t) is the entropy of t subset.

E. SUPPORT VECTOR MACHINE
SVMs takes the input samples as a point in the geometrical
space. The main aim is to identify the best hyperplane that
distinguishes points between negative and positive categories
in the case of binary classification. SVM utilizes a set of
feature functions in terms of flexibility instead of using event
space in NB.

In case of linearly separable data, x+ and x− are the closest
positive and negative training points to the hyperplane. The
margin is written as follows:

margin = |w.x−| + |w.x+| / ||w||. (5)

A vector w must be identified in order to solve the
optimization problem of identifying the better hyperplane.
The optimization problem can be expressed as identifying
||w||2/2 subject to w.xi ≤ −1, ∀i such that class(i) =
negative and w.xi ≥ 1,∀i, class(i) = positive. In reality, most
of the datasets are non-linearly separable and few datasets are
linearly separable. [29]

F. K-NEAREST NEIGHBOURS
The K-Nearest Neighbours method stores all the possible
points and classifies new given points based on a similar-
ity or distance function. KNN has been utilized in pattern
recognition since the 1970s as a non-parametric method.
A point is classified by the majority of votes of its neighbor
point, with the point has been allocated to the class most
common among their k nearest neighbors. Some distance
functions can be seen below:

• Euclidean distance function,
√∑k

i=1(xi − yi)2

• Manhattan distance function,
∑k

i=1 |xi − yi|

• Minkowski distance function, (
∑k

i=1(|xi − yi|)
q)

1
q

• Hamming distance function, DH =
∑k

i=1 |xi − yi|
The first three distance functions are valid for continuous

variables. The hamming distance is generally used for cate-
gorical variables; so, if x = y then DH = 0 and if x 6= y then
DH = 1.

The optimal value of k can be chosen by examining the
data. Generally, a higher value of k is better as it helps to
reduce the noise but this cannot be guaranteed. Another way
is to use cross validation to find a better k value by utilizing
independent data to validate the k .

G. CLASSICAL SIGNAL DETECTION THEORY
Signal Detection Theory (SDT) gives a general framework
to illustrate and inspect decisions made in uncertain and
ambiguous situations. SDT is based on three main concepts,

FIGURE 1. Classical communication system.

FIGURE 2. Signal Detection Theory (SDT).

i.e. signal, noise, and decision. Channel, receiver and source
are the components of any signal detector (Figure 1).

We utilize SDT because classification is a task directly
involving human users and SDT has been utilized widely in
the field of psychophysics, that is, the field that examines the
connection between stimulus and its psychological effect.

SDT needs some inference about how many types of deci-
sions are considered under uncertainty. The three grounded
questions in SDT are as follows: (a) Are we certain about the
signal? (b) How can we know if the signal is correct? (c) How
do we determine to react or not?

SDT function is used to identify whether the detected
impulse is caused by the signal or noise [30]–[32]. Deci-
sion theory manages the possibilities among the hypotheses
about the system at hand. Estimation Theory generally man-
ages data x1, x2, x3, . . . , xn whose joint probability density
function P(x; θ ) = P(x1, x2, x3, . . . , xn; θ1, θ2, θ3, . . . , θm)
depends on some unknown parameter θ = (θ1, θ2, θ3, . . . , θm)
which is to be computed. For example, the given data can be
samples xj = x(tj) for the given input x(t) = s(t; θ) + n(t)
to the receiver, consist of noise n(t) with statistical charac-
teristics and a signal s(t; θ ) which depends on θ , i.e. time of
arrival, amplitude and carrier frequency. Estimation Theory
sets up an estimation of seriousness or cost of errors in the
estimates θ̂ = (θ̂1, θ̂2, . . . , θ̂m) of some parameters. The very
common cost function, which is the weighted sum of the
squared errors is as follows:

K (θ̂ , θ) =
m∑
k=1

Wk (θ̂k − θk )2. (6)

The main issue is to identify the θ̂k = θ̂k (x1, x2, x3, . . . , xn)
as a function of that data in order to minimize the average
cost.

In the case of binary decision, i.e. binary classification,
there are two hypotheses, each hypothesis being represented
by the presence or absence of the signal s(t) in the input form
x(t) to the receiver during some observation interval (0,T ),
where n(t) is noise with statistical characteristics. The two
hypotheses can be written as follows:
• Null hypothesis, A0 : x(t) = n(t)
• Alternative hypothesis, A1 : x(t) = n(t)+ s(t)
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TABLE 1. Summary of the decision about the presence / absence of a
signal. For each actual state and decision the corresponding outcome has
costs.

The best method of deciding between two hypotheses can
be expressed in two ways. In terms of NB, an observer is
aware of the following:
• the prior probabilities ξ and (1−ξ ) of hypothesis A0 and
A1

• the four costs Kij of choosing hypothesis Ai when Aj is
correct (i, j ∈ {0, 1}).

The costs are required by the circumstances and the actions
following the choices, in such a way that average cost would
be minimal. Table 1 summarizes the decision costs.

Another way to describe the optimal binary decision is
given by the theory of Neyman and Pearson [33], [34] which
explains the two possible types of errors:
• opting for A1 when A0 is true, which is also known as
false alarm or first type of error and its probability under
the given method is represented by Q0;

• opting for A0 when A1 is true, which is also known
as miss or second type of error and its probability is
represented by Q1.

The complement Qd = 1 − Q1 is often known as the prob-
ability of detection. The strategy finding the best decision
achieves the highest probabilityQd for each first type of error
probability Q0.

H. QUANTUM MECHANICS
Quantum Mechanics is one of the most surprising parts
of modern physics and eminent theoretical achievements.
It was originated to describe puzzling observations that were
not possible to interpret by utilizing classical physics. The
researchers obtained this by bringing a completely new set
of principles into play. During the process of defining the
newmechanics of the invisible world, a physicist also created
a novel theory of a dynamic probabilistic system, which
is more accepted than previous classical theory in particle
physics [35], [36].

QM was first presented by Erwin Schroedinger and
Werner Heisenberg and it reached maturity in the 1920s
and 1930s [48]. In particular, Schroedinger formulated the
fundamental equation of wave mechanics which is known
as Schroedinger’s equation: Hψ = Eψ , where ψ is the
eigenfunction which describes the state of the system, H
is a Hamiltonian operator and E is the eigenvalue for the
system energy. Heisenberg introduced the Uncertainty Prin-
ciple stating that the momentum and position of any particle
cannot be measured at the same time at arbitrary precision
[37], thus establishing the principle that Nature is basically
uncertain. While measurement of macroscopic world entities
is deterministic according to the classical theory because of

the fact that a system state can be absolutely measured several
times, randomness is an intrinsic feature of the invisible world
according to QM. This uncertainty does not happen because
of the imprecision in measurement, it is rather due to the
intrinsic randomness of the state of the system [38].

Quantum superposition is the core of QM, as said by
Feynman. It can be simply represented by a mathematical
equation:

ψ = α1|φ1〉 + α2|φ2〉 |α1|
2
+ |α2|

2
= 1. (7)

The equation 7 can simply be understood as follows: a particle
that is set at a certain state ψ is simultaneously set at both
states φ1 and φ2. But, when the particle is measured and a
decision is taken as to whether the particle has been set at
φ1 or φ2, either φ1 or φ2 will result and the particle will
no longer be set at the superposed state φ, which is called
‘‘collapse’’.

Collapse is a random event whose mechanics cannot be
described in a deterministic way. An observer can only esti-
mate the probability |αi|2 that the particle collapses to φi.
A superposed state ψ of one particle and the probability
distribution thereof is radically different from a collection of
individual particles where α1 × 100% of the particles are at
the state φ1 and α2×100% of the particles are at state φ2. The
latter distribution is called mixture and refers to a collection
of individual particles whereas superposition refers to one
individual particle.

Both superposition and mixture are described by den-
sity operators. A density operator is a mathematical object
‘‘universally’’ utilized to encode probability distributions and
describe superpositions ρ’s or equivalently ψ’s such as

ρ = |ψ〉〈ψ |

and mixtures of superpositions as can be seen as follows:∑
pi|ρi〉〈ρi|,

where pi is the proportion of particles of the mixture at state
ψi.

IV. PROPOSED ARCHITECTURE AND METHODOLOGY
The overall proposed architecture of our model can be seen
in Figure 3, showing howSDT,QM,QuantumSDT, Classical
ML, DT are intersected in order to develop the Quantum
Detection Model, which is used as a classifier. As in the gen-
eral classification (supervised learning) task, input features
with the given label are used to train the model and then
the model is tested based on test features without any labels.
Also in QIBC a label with input features is used to train our
proposed model and tested on the test dataset.

The methodology of the proposed QIBC framework
in the Section IV-B which is inspired by quantum SDT
(Section IV-A).

A. QUANTUM SDT
In quantum SDT, there is coder between the channel and
source as shown in Figure 4. On the side of the source,
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FIGURE 3. Quantum-Inspired Binary Classifier (QIBC).

FIGURE 4. Quantum communication system.

the encoding part is carried out by the coder from the signal
into some particle, i.e. a qubit whose pure state is |φ〉. On the
side of the receiver, a measurement is implemented, like the
classical detection framework. The main difference between
the classical and quantum model lies in what is encoded
by an encoder and then what is decoded by the decoder.
Mathematically speaking, this contrast means that the projec-
tor corresponding to the prime measurement can optimally
be measured by utilizing classical theory in the case of the
classical model. [38]–[41].

The two hypotheses subjected to decision are the pres-
ence or the absence of the signal. In the case of quantum
framework, the decision about a system is to bemade between
these two density operators, i.e. either:

• A0 with density operator ρ0 and with the prior probabil-
ity ξ , or

• A1 with density operator ρ1 and with the prior probabil-
ity (1− ξ ).

Consider some output x1, x2, x3, . . . of some observables
X1,X2,X3, . . .. The decision will be based upon a detection
operator 1. The detection operator must be the one whose
eigenvalues are 0 and 1, and this kind of operator is denoted
as projection operator. The choice should be made between
0 and 1, and opt for A0 when 1 = 0 and A1 when 1 = 1.
The detection operator1 yields 1 underA0 with the following

probability:

Q0 = P(1 = 1|A0) = tr(ρ01). (8)

Similarly,

Q1 = P(1 = 1|A1) = tr(ρ11). (9)

The average cost can be written as

K̄=ξK00+(1−ξ )K01−(1− ξ )(K01−K11)tr(ρ1−λρ0)1,

(10)

where

λ =
ξ (K10 − K00)

(1− ξ )(K01 − K11)
. (11)

As long as K01 > K11, K̄ will be minimum if
tr ((ρ1 − λρ0)1) can be maximized.
The best detection operator is provided by the eigenstates
|el〉 of the operator ρ1 − λρ0 corresponding to the positive
eigenvalues, where the eigensystem is provided by

(ρ1 − λρ0)|el〉 = el |el〉 l = 1, . . . , (rank of ρ1 − λρ0).

(12)

So it is essential to maximize

tr(ρ1 − λρ0)1 =
∑
l

el〈el |1|el〉 (13)

and this can be obtained if

ek 〈el |1|el〉 = 1, el ≥ 0 and el〈el |1|el〉 = 0, el < 0.

Hence, the estimation of the optimal projection operator
between A0 and A1 can be written as

1 =
∑
l:el≥0

|el〉〈el |. (14)
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So the probabilities of error can be written as:

Q0 =
∑
l:el≥0

〈el |ρ0|el〉 and Q1 = 1−
∑
l:el≥0

〈el |ρ1|el〉.

(15)

and the minimum average cost can be written as:

¯Kmin = ξK00 + (1− ξ )K01 − (1− ξ )(K01 − K11)
∑
l:el>0

el

(16)

Quantum SDT in IR was introduced in [42] to re-weight the
query terms and re-rank the retrieved documents. Consider
the vector |y〉, which is the input query of an IR system
providing a ranked list of documents, each document being
represented by a vector |x〉. The relevance assessments allow
to estimate the density operators ρ0 by using nonrelevant
documents and ρ1 by using relevant documents. The use of
quantum SDT in IR consists of a relevance feedback algo-
rithm which projects both the query vector |y〉 and the docu-
ment vectors |x〉 by means of the optimal detection operator;
therefore, re-ranking is computed by:

〈x|1|y〉. (17)

B. QUANTUM-INSPIRED BINARY CLASSIFIER
A novel QIBC inspired by quantum detection theory is
described in this section. For each topic (category) we sup-
pose that each training sample is about the category or not.
For a given category and the set of training samples, we use
the projector 1 for each category to identify whether the test
sample is about the category or not. To determine whether
the test sample is about the category, 1 is examined against
a vectorial representation of the test sample.

Consider a set of distinct features calculated from the
whole sample collection. Each sample can be represented as
a vector of features; each element in the feature vector is a
non-negative number such as frequency. Each sample in the
training set has a binary label in {0, 1}. The main goal of
QIBC is to obtain one binary label for each sample in the test
set.

The QIBC estimates the density operators ρ0 and ρ1
by using the training sample; in particular, for each class,
the negative training samples were utilized to estimate ρ0 and
the positive training samples were utilized to estimate ρ1.
In order to achieve these density operators ρ0 and ρ1,

we firstly calculated the total number of samples with non-
zero values for each particular feature. In this way, one vector
|v〉 was obtained for each class. Since we were considering
the binary case, two vectors |v0〉 and |v1〉 were obtained;
the former refers to the negative training sample and the
latter refers to the positive training sample. These vectors
can be considered as statistics of the features in a class. We
normalized the acquired vectors to obtain |〈v|v〉|2 = 1. Then,
we calculated the outer product in order to obtain the density

operators ρ0 and ρ1 as follows:

ρ0 =
|v0〉〈v0

tr(|v0〉〈v0)
ρ1 =

|v1〉〈v1
tr(|v1〉〈v1)

(18)

We set λ = 1, meaning that the prior probability is the
same for both classes (ξ = 0.5); moreover, there is no cost
for correct detection K00 = K11 = 0; finally, the costs of
false alarm and miss are constant (K01 = K10). Eventually,
we determined the binary label for the given test sample
x represented by |x〉 by inspecting the value of 〈x|1|x〉. If
〈x|1|x〉 ≥ 0.5 then x was assigned to the class, otherwise it
was not assigned.

V. EXPERIMENTS
A. DATASET DESCRIPTION
To evaluate the effectiveness of our proposed model,
the 20 Newsgroups1 text corpora have been used. The
20Newsgroups text corpora is a set of 18,846 newsgroup doc-
uments, categorized evenly across 20 different newsgroups
and each newsgroup corresponds to some different topics

‘‘(alt.atheism, comp.graphics, comp.os.ms-windows.misc,
comp.sys.ibm.pc.hardware, comp.sys.mac.hardware,
comp.windows.x, misc.forsale, rec.autos, rec.motorcycles,
rec.sport.baseball, rec.sport.hockey, sci.crypt, sci.electronics,
sci.med, sci.space, soc.religion.christian, talk.politics.guns,
talk.politics.mideast, talk.politics.misc, talk.religion.misc)’’.
There are 18,846 documents in which 11,314 documents are
used for training purposes and 7,532 for testing2.
To check the effect of our proposed model on an image

dataset as well, the MNIST handwritten image dataset 3 was
used. There are 60,000 training set examples, and 10,000 test
set examples in the dataset. There were 10 categories from
0 to 9 but the last category was not taken into consideration
because there were much fewer samples. This dataset is a
subset of a larger set available from NIST. The digits have
been size-normalized and centered in a fixed-size image.

B. PROCEDURE
Feature selection is always an essential step. The evaluation
measures vary by changing the number of selected features,
so selecting the top 400 or the top 10 features greatly affects
the evaluation measures. We used the chi-square feature
selection method to select those top features. In order to
see the changes we decided to do analysis on the range of
features, like starting from the top 5, 10, 15, 20, 30, 40, 50,
70, 100, 150, 200 and 400. We used these ranges of numbers
randomly as the basis of the obtained experiment.

We used NB, SVM, KNN and DT as baselines in order
to compare with QIBC. These evaluation parameters were
used i.e. precision, recall, and F-measure, to measure the
effectiveness of QIBC and of the baselines.

1http://qwone.com/~jason/20Newsgroups/
2http://www.cad.zju.edu.cn/home/dengcai/Data/

TextData.html
3http://yann.lecun.com/exdb/mnist/

42360 VOLUME 7, 2019

http://qwone.com/~jason/20Newsgroups/
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://yann.lecun.com/exdb/mnist/


P. Tiwari, M. Melucci: Toward a Quantum-Inspired Binary Classifier

There are multiple categories available in both datasets;
therefore, we used one-vs-all strategy for each category, that
is, the sample in the training set labeled as pertinent to the
category was considered a positive example while the rest
were negative examples. In some cases, there were very
few samples or no samples for a given category so some
categories were excluded. Five-fold cross-validation was per-
formed while training the model.

C. MEASURES
The measures that are often used in ML to check the per-
formance of the proposed model are Precision, Recall and
F-measure.

Precision =
TP

TP+ FP
Recall =

TP
TP+ FN

F-measure =
2× Precision× Recall
Precision+ Recall

,

where
• TP is the number of true positives, i.e. the samples that
are correctly classified in a certain class;

• FP is the number of false positives, i.e. the samples that
are not classified in the class;

• TN is the number of true negatives, i.e. the samples that
are not correctly classified in the class;

• FN is the number of false negatives, i.e. the samples that
are incorrectly classified in the class.

D. RESULTS
1) EXPERIMENTAL RESULTS ON MNIST HANDWRITTEN
IMAGE DATASET
The three evaluation parameters, i.e., Precision, Recall and
F-measure, were used to evaluate the performance of the
models. We used the MNIST handwritten image dataset to
check the performance of our model on an image dataset. The
evaluation parameters change when altering the range of fea-
tures.We selected a range of features, i.e. the top 5, 10, 15, 20,
30, 40, 50, 70, 100, 150, 200 and 400, respectively. Analysis
was performed for each category. QIBC outperforms all the
baselines for several categories in terms of precision, recall
and F-measures which can be seen in Table 2, 3 and 4.

Our proposed QIBC model outperformed all baselines in
terms of recall for almost the entire range of features, as can
be seen from Figure 5. In terms of recall, QIBC works very
well on an image dataset and can be used safely where high
recall is required as it performs better overall baselines. Com-
putation time is another issue as some baselines take a long
time to compute, for example SVM and KNN, while QIBC
takes much less time to compute which is another advantage.

In terms of F-measure, QIBC outperformed all the existing
models in the starting range of features, i.e. the top 5, 10,
15, 20 and 30, for all categories except category 0 as can be
seen in Figures 6(b), 6(c), 6(d), 6(e), 6(f), 6(g), 6(h) and 6(i).
QIBC outperformed existing models in all ranges up to the
top 50 features as can be seen in Figures 6(b) 6(c) 6(f) 6(g)
for categories 1, 2, 5, 6 and 7. QIBC outperformed existing

models in all ranges up to the top 70 features for category 6 as
can be seen in Figure 6(g). Subsequently, QIBC performance
started decreasing with an increasing number of features,
i.e. 100, 150, 200 and 400. Therefore, QIBC can provide
some good results where other baselines cannot perform, for
instance when the top 5 features are selected.

In terms of precision, QIBC outperformed all the baselines
for several categories, i.e. categories 0, 1, 5, 6 and 7 when the
top 10 features were selected as can be seen in Figures 7(a),
7(b), 7(f), 7(g) and 7(h). QIBC had results similar to the
baselines for categories 1, 2, 5 and 6 when the top 15 features
were selected as can be seen in Figures 7(b), 7(c), 7(f) and
7(g). The QIBC performance was similar to the baselines in
the cases of categories 5 and 6 when the top 20 features were
selected as can be seen in Figure 7(f) and 7(g). QIBC still
outperformed some baselines, for instance SVM, when the
top 50 features were selected for category 1 as can be seen
in 7(b). It also outperformed SVM when the top 70 features
were selected for category 3 as can be seen in 7(d). QIBC
outperformed KNN when the top 20 features were selected
for category 4 as can be seen in 7(e) and it outperformed
SVM when the top 40 features were selected for category
5 as can be seen in 7(f). QIBC outperformed SVM when the
top 70 features were selected for category 6 as can be seen
in 7(g) and it outperformed SVM when the top 50 features
were selected for category 7 as can be seen in 7(h). Lastly,
QIBC outperformed SVM when the top 30 and 40 features
were selected for category 8 as can be seen in 7(d).

2) EXPERIMENTAL RESULTS ON 20 NEWSGROUP TEXT
CORPORA
QIBC outperforms all the baselines for several topics in
terms of precision, recall and F-measures which can be seen
in Table 5, 6 and 7.

In terms of Precision, QIBC outperformed most of the
baselines, i.e. topics 2, 7, 19, 20, 1, 3, 4, 6, 8, 9, 10, 14,
16 and 18 for the top 5 features as can be seen in Figure 8(a).
DT failed to even perform for 15 out of 20 topics and DT
performed better for only 5 topics. It can be seen in Figure 8
and Figure 11 that the performance of QIBC in terms of
precision and computation time was better than the other
baselines if we take DT into less consideration because it
failed to even perform for most of the topics. A similar
situation happened when the top 10 features were selected as
can be seen in Figure 8(c) where QIBC outperformed most
of the baselines, i.e. topics 5, 4, 20, 9, 1, 3, 6, 8, 10, 15,
16 and 18, in terms of precision and computation time. QIBC
outperformed all the baselines for most of the topics, i.e. 8, 1,
3, 4, 7, 9, 10, 14, 16, 18 and 20, when the top 15 features were
selected as again DT failed to perform for most of the topics.
QIBC performed better again for the topics, i.e. 3, 4, 7, 9, 10,
14, 15, 18 and 20 as can be seen in Figure 8(b). By increasing
the number of selected features, the performance of QIBC
decreased slightly with the increasing number of features but
again QIBC takes much less time to perform and always
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FIGURE 5. Recall chart for each category by changing number of features 5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200 and 400 among KNN, DT, NB, SVM and
QIBC on MNIST handwritten image dataset.
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TABLE 2. Precision Table where QIBC outperform all the baselines (i.e. QIBCt stands for the performance of QIBC for the topic or category t) on
20 newsgroup dataset for all range of features, i.e. top 5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200 and 400.

TABLE 3. Recall Table where QIBC outperform all the baselines (i.e. QIBCt stands for the performance of QIBC for the topic or category t) on
20 newsgroup dataset for all range of features, i.e. top 5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200 and 400.

TABLE 4. F-measure Table where QIBC outperform all the baselines (i.e. QIBCt stands for the performance of QIBC for the topic or category t) on
20 newsgroup dataset for all range of features, i.e. top 5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200 and 400.

performs for the hard topics, where others cannot perform, for
example DT. Interestingly, QIBC performed slightly better
compared to DT for several topics, i.e. topics 17, 5, 2, 3, 7,

9, 10, 11, 14, 16, 18 and 20, when the top 150 features were
selected as can be seen in Figure 8(j). The performances of
other baselines such asKNN,NB and SVMwere low formost
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FIGURE 6. F-measure chart for each category by changing number of features 5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200 and 400 among KNN, DT, NB, SVM
and QIBC on MNIST handwritten image dataset.
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FIGURE 7. Precision chart for each category by changing number of features 5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200 and 400 among KNN, DT, NB, SVM
and QIBC on MNIST handwritten image dataset.
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TABLE 5. Recall Table where QIBC outperform all the baselines (i.e. QIBCt stands for the performance of QIBC for the topic or category t) on MNIST
handwritten image dataset for all range of features, i.e. top 5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200 and 400.

TABLE 6. F-measure Table where QIBC outperform all the baselines (i.e. QIBCt stands for the performance of QIBC for the topic or category t) on MNIST
handwritten image dataset for all range of features, i.e. top 5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200 and 400.

of the topics in addition to the fact that KNN and SVM take
a long time for computation as well.

In terms of recall, the performance of QIBC improved by
increasing the number of top selected features as can be seen
in Figure 9. For example, if we consider the top 50 features
then QIBC outperformed the baselines for most topics, i.e.
topics 4, 7, 3, 19, 20, 6, 14, 5, 15, 18, 12 and 11 as can be
seen in Figure 9(g). DT again failed to perform for most of the
topics. The QIBC performance increased with an increasing
number of features as can be seen in Figure 9, although it
performed better for few topics when the top 150 features
were selected as can be seen in Figure 9(k). KNN always
performed better for topic 1.

In terms of F-measure, QIBC performance started improv-
ing by increasing the number of top selected features as can be
seen in Figure 10. QIBC performance started improving for
top selected features, i.e. the top 30, 40, 50, 70 and so on. For
example, if we consider the top 50 features thenQIBC outper-
formed the baselines for most topics, i.e. topics 4, 7, 3, 19, 20,

TABLE 7. Precision Table where QIBC outperform all the baselines (i.e.
QIBCt stands for the performance of QIBC for the topic or category t) on
MNIST handwritten image dataset for all range of features, i.e. top 5, 10,
15, 20, 30, 40, 50, 70, 100, 150, 200 and 400.

6, 14, 5, 1, 15, 18 and 11 as can be seen in Figure 10(g). QIBC
outperformed more than half of the topics when the top 40,
50, 70 and 100 features were selected. QIBC performed better
for only 6 topics when the top 150 features were selected.
When the top 200 and 400 features were selected then QIBC
performed better for 7 and 8 topics out of 20. As with the
increasing number of selected features, computation time also
increased for all baselines as well as for QIBC but QIBC is
more effective because it requires less computation time with
the better measures.
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FIGURE 8. Precision chart based on top selected features from top 5 to top 400 among KNN, DT, NB, SVM and QIBC on 20 Newsgroup Text Corpora.
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FIGURE 9. Recall chart based on top selected features from top 5 to top 400 among KNN, DT, NB, SVM and QIBC on 20 Newsgroup Text Corpora.
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FIGURE 10. F-measure chart based on top selected features from top 5 to top 400 among KNN, DT, NB, SVM and QIBC on 20 Newsgroup Text Corpora.
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FIGURE 11. Computation Time in second of each classifier for MNIST
Handwritten Image Dataset and 20 Newsgroup Text Corpora among KNN,
DT, NB, SVM, QIBC. (a) Computation Time in second among KNN, DT, NB,
SVM and QIBC on MNIST Handwritten Image Dataset. (b) Computation
Time in second among KNN, DT, NB, SVM and QIBC on 20 Newsgroup Text
Corpora.

E. CASE STUDY
QIBC output varies by changing the threshold value of
〈x|1|x〉 from 0.5 to something else. Some case studies have
been done on theMNIST handwritten image dataset as can be
seen in Figure 12. QIBC precision is optimal for categories
0 and 8 when 〈x|1|x〉 > 0.5. QIBC precision is higher for
categories 1 and 4 when 〈x|1|x〉 > 0.4. Precision is higher
for category 2when 〈x|1|x〉 > 0.6 and has a similar precision
for categories 3 and 7. Precision is higher for categories 5 and
6 when 〈x|1|x〉 > 0.7. In terms of recall, recall is similar in
all cases for category 0. Recall rate is higher for categories
1 and 4 when 〈x|1|x〉 > 0.6. Recall is higher for categories
2 and 3 when 〈x|1|x〉 > 0.7. Again, there is higher recall for
categories 5 and 8 when 〈x|1|x〉 > 0.4. Recall for category
6 is also higher when 〈x|1|x〉 > 0.5. They have similar F-
measure for categories 0 and 5 in all four cases. F-measure is
higher for categories 1 and 3 when 〈x|1|x〉 > 0.5. F-measure
rate is higher for categories 2 and 4 when 〈x|1|x〉 > 0.7 and
so on.

We also experimented on the 20 Newsgroups dataset as can
be seen in Figure 13. In terms of precision, QIBC precision
is higher for categories 1 and 5 when 〈x|1|x〉 > 0.4. QIBC
has similar precision for categories 2, 3, 4, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 18, 19 and 20. Precision is higher for
category 6 when 〈x|1|x〉〉 > 0.6 and 0.7, and higher for

FIGURE 12. Threshold chart of QIBC by changing the 〈x|1|x〉 > 0.4, 0.5,
0.6 and 0.7 on MNIST handwritten image dataset.

category 17 when 〈x|1|x〉 > 0.6. Recall is higher for cat-
egories 1, 2, 3, 5, 6, 9, 10, 14, 15 and 16 when 〈x|1|x〉 > 0.4.
Recall is similar for categories 4, 7, 8, 11, 12, 13, 17, 18,
19 and 20 in all cases. F-measure is higher for categories
1, 2, 3, 5, 6, 9, 10, 14, 15, 16, and 17 for each case. F-
measure is similar for categories 4, 7, 8, 11, 12, 13, 18,
19 and 20 for each case. So the main reason for this case
study was to check the deviation in the measures by changing
threshold values. It is possible to get high measures also in
certain circumstances as can be seen throughout the case
study.

42370 VOLUME 7, 2019



P. Tiwari, M. Melucci: Toward a Quantum-Inspired Binary Classifier

FIGURE 13. Threshold chart of QIBC by changing the 〈x|1|x〉 > 0.4, 0.5,
0.6 and 0.7 on 20 Newsgroup Dataset.

VI. CONCLUSIONS AND FUTURE WORKS
QIBC outperformed the baselines for several categories.
We investigated how QIBC performs better in the range
of features for example, recall increases with an increasing
number of features and F-measure starts decreasing with an
increasing number of features for the image dataset. This
outcome encourages us to further investigate the world of
quantum-inspired ML frameworks. However, some results
are still unsatisfactory for some categories (topics).

In order to understand the reason as to why our proposed
model fails for some topics and performs better for other
topics, we need to do a micro-analysis and find the main

reason for failure and success. This analysis might help us
to improve our model. Our proposed framework is just the
gateway to the quantum-inspired ML world and we need to
put more effort into understanding the effectiveness of QM in
order to develop more efficient algorithms.

We implemented our model on text corpora as well as on
the image corpora to check the performance. We achieved
high precision for several topics (categories) when text cor-
pora was used as well as high recall with F-measure for
most of the topics (categories). We achieved high recall for
every category as well as high F-measure for most categories
when image corpora was used. The result obtained from the
image corpora can be beneficial in several domains, i.e. patent
search and biomedical image classification, where recall is
crucial for tasks aiming to find all the pertinent items of a
class.

We addressed binary classification. Although it is not a
limitation, we are trying to implement a multi-class classifier
inspired by quantum detection theory for multi-class classi-
fication problems. Besides, we are also working on multi-
label classification tasks in order to come up with multi-label
classifiers.
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