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Abstract. A large number of studies in cognitive science have revealed
that probabilistic outcomes of certain human decisions do not agree
with the axioms of classical probability theory. The field of Quantum
Cognition provides an alternative probabilistic model to explain such
paradoxical findings. It posits that cognitive systems have an underlying
quantum-like structure, especially in decision-making under uncertainty.
In this paper, we hypothesise that relevance judgement, being a multi-
dimensional, cognitive concept, can be used to probe the quantum-like
structure for modelling users’ cognitive states in information seeking.
Extending from an experiment protocol inspired by the Stern-Gerlach
experiment in Quantum Physics, we design a crowd-sourced user study to
show violation of the Kolmogorovian probability axioms as a proof of the
quantum-like structure, and provide a comparison between a quantum
probabilistic model and a Bayesian model for predictions of relevance.

Keywords: Multidimensional relevance - User behaviour - Quantum
Cognition

1 Introduction

Relevance in Information Retrieval (IR) is widely accepted to be a cognitive
feature, driving all our information interactions. All areas of research within IR
thus strive to improve relevance of documents to a user’s information need (IN).
These research areas of IR can be broadly divided into two: system-oriented
and user-oriented IR. Whereas the system-oriented viewpoint ties relevance to
be an objective property of the document and query content, the user-oriented
approach to IR views relevance as a cognitive property. Although IR fundamen-
tally involves user interaction and decision-making, the user-oriented approach
has been found harder to implement, especially in evaluating performance of IR
systems. This is because of the variability in user judgements of relevance [5].
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System-oriented IR thus sought to standardise IR evaluation, in which the user-
cognitive notion of relevance was replaced by an objective, topical relevance.
This led to evaluation methodologies based on the Cranfield and TREC type
test collections. The user and all of his/her contexts were removed from the
evaluation process.

Recent surge in availability of online user data has led to incorporation of
more user context in the computation of relevance, e.g. in learning based ranking
algorithms. This context is based on the user’s past interactions with the system,
in addition to user attributes like age, interests, etc. and current attributes like
location, type of device, etc. The common feature in these various contexts is
that they are static. They are determined before the point of user’s interaction
with the IR system. However, the process of IR is interactive and dynamic.
In this paper, we focus on another type of context driving user interactions -
dynamic context. Dynamic context is one which changes user’s cognitive state
during information interaction.

One well-known example of when a dynamic context affects relevance is the
phenomenon of Order Effect [8]. Order effects have been investigated and found
to exist in IR in the presentation order of documents [4,6,9,24]. For example, in
a recent study reported in [22], two groups of participants were presented with a
pair of documents Dy and D- in two different orders. For some of such pairs, it
was found that the relevance of a document judged by users is different depending
on the order it was presented. Although the phenomenon may appear to have an
intuitive explanation, it violates one of the fundamental assumptions of classical
probability theory - joint distributions, where, for two random variables repre-
senting relevance of the documents - Ry, Ro, P(R1, R2) = P(R2, Ry), i.e., the
order of judging the documents does not matter. Order effects violate this funda-
mental assumption. Such order effects have also been investigated and reported
in between the different dimensions of relevance, like Topicality, Understandabil-
ity, Reliability, etc. [1,19,20], where different orders of dimensions considered to
judge a document lead to different relevance judgements.

The field of Quantum Cognition [2] offers a generalised framework to model
probabilistic outcomes of human decision-making. It has been successful in mod-
elling and predicting order effects [16,23] and other paradoxical findings where
axioms of classical probability theory are violated [3,14]. Conceptually, it chal-
lenges the notion that cognitive states have pre-defined values and that a mea-
surement merely records them. Instead, the act of measurement creates a definite
state out of an indefinite state and in doing so, changes the initial state of the
cognitive system. In terms of relevance, we cannot pre-assign relevance of a doc-
ument for a user. Instead, relevance is defined only at the point of interaction
of the user’s cognitive state with the document. Therefore, judgement of doc-
ument Do first, changes user’s initial state and the subsequent judgement of
relevance of D is different than when D; is judged before Dy. Should relevance
of the documents for a user be a pre-defined entity, it would not be influenced by
judgement of other documents and a joint distribution over relevance of the two
documents would exist. We also say that these two measurements of relevance
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are incompatible with each other. That is, it is not possible to jointly consider
the relevance of the two documents, at the same time. At the mathematical
level, measurements in quantum theory are represented by operators, which in
general, do not commute with each other.

In a classical system, all measurements will commute with each other. How-
ever, conversely, commutativity of measurements does not necessarily imply that
the system is classical. Therefore, the type of measurements becomes imperative
in identifying a quantum system. Even then, not all measurements on quan-
tum systems generate data violating the classical probability theory. The system
needs to be probed in a way which exploits the underlying quantum structure.
In physics, this was done by experiments such as Stern-Gerlach and double-slit
experiments [15] which showed the violation of classical probability principles
for microscopic particles like electrons and photons. In cognitive science too,
several experiments performed by Tversky, Kahneman and colleagues showed
such violations in human decision-making under uncertainty [17].

Recently, an experiment protocol inspired by the Stern-Gerlach experiment
in Physics has provided a new way to probe cognitive systems such that they
exhibit a quantum-like structure [7]. By quantum-like structure we mean the rep-
resentation of a system using the mathematical framework of quantum theory in
order to model and predict the experimental data. In [19], this experiment was
performed in an IR scenario involving judgement of relevance with respect to dif-
ferent dimensions. Extending from the Stern-Gerlach protocol, in this paper we
design a new experiment to show the violation of classical probability theory in
multidimensional relevance judgements. We hypothesise that multidimensional
relevance judgement has an underlying quantum-like structure, which when sub-
ject to appropriate measurement design can exhibit violations of classical prob-
ability theory. Specifically, we investigate the violation of a particular axiom of
Kolmogorovian probability theory [11]. Our results show that the experimental
data indeed violates classical probability theory, and a quantum framework pro-
vides more accurate predictions to describe the data. This experiment not only
shows the necessity of the quantum framework as an alternative for constructing
probabilistic models, but also gives novel insights into user behaviour in IR. This
understanding can contribute to improvement of interactive IR systems and we
also discuss such implications in this paper.

2 Stern-Gerlach Inspired Protocol for Multidimensional
Relevance

The basis of the research reported in this paper is the cognitive analogue of the
Stern-Gerlach (S-G) experiment, originally conducted in [19]. The S-G exper-
iment [15] was an important milestone in quantum physics as it showed the
non-classical behaviour of microscopic systems. The key was a particular design
of the experiment which exploited the incompatibility between measurement of
electron spin states along different axes. An electron has a particular property
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(a) Asking three questions in TUR order (b) Asking three questions in TRU order

Fig. 1. S-G type experiment to construct a complex-valued Hilbert space

called spin, having two possible values - up (+), down (-), which can be mea-
sured along different axes. An electron may have spin state + along the x-axis
but state — along y-axis. So the outcome of measurement of the spin property
of the electron depends upon the axis of measurement. Also, any measurement
of spin disturbs the system. If a measurement of spin is made along X axis
and Z axis, then a third measurement along X axis may give a different answer
than the first one. This phenomena is called measurement incompatibility, where
two measurements cannot be jointly conducted on a system - one measurement
disturbs the system and the other would then measure the changed system.

The S-G experiment also describes the minimum number of measurements
required from a system to construct a complex-valued Hilbert Space structure.
In particular, we need three incompatible measurements each with two mutually
exclusive outcomes. We can use this arrangement of measuring properties of a
quantum system to measure relevance of a document in IR. For this, we consider
three dimensions of relevance: Topicality (T) - whether a document is topically
relevant to a query, Understandability (U) - how easy it is to understand the
content of the document, and Reliability (R) - how much can the document be
relied upon. Each of these three dimensions can be posed as questions requir-
ing a Yes/No type answer (denoted as + and — respectively) for a document.
These three dimensions are important factors considered by users for deciding
relevance. Besides, they are tied to a single document, unlike diversity or nov-
elty, which is always considered in comparison with other documents. Certain
dimensions like Interest, Habit, etc. are difficult to ascertain via crowdsourcing.
As reported in [1], the different relevance dimensions can exhibit incompatibility
for certain query-document pairs.

In [19], three query-document pairs were designed in such a way as to poten-
tially exhibit incompatibility between judgement of relevance with respect to
different dimensions. The content of the documents was altered to introduce
uncertainty in judging each of the three dimensions. The participants were pre-
sented with three questions related to three relevance dimensions, for each query-
document pair, in line with the S-G design. Figure 1 shows the three questions
asked to two different groups in different orders. More details about this design
can be found in [19] and [7]. This setup enables one to construct a complex-valued
Hilbert space, which models the quantum-like structure of the user’s cognitive
state during information interaction.
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2.1 Constructing Complex-Valued Hilbert Space

The first step in building a quantum probabilistic model is to construct a repre-
sentation for the user’s cognitive state. In the quantum framework, a complex-
valued Hilbert space is used to represent a quantum system, and the state of the
system is represented as a vector in this Hilbert space.

Following the convention used in Quantum Physics, we represent any
complex-valued vector A in a finite dimensional Hilbert space as a ket vector |A)
and its complex conjugate as a bra vector (A|. The norm of this vector is the
square root of its inner product with its conjugate - | (A|A) |'/2. For two such
vectors, their projection onto each other is given as the square of their inner
product - | (A|B) |?. Each vector is written as a linear combination of the vec-
tors of the basis in which it is represented. For the purpose of representing the
cognitive state of a person judging a document as topically relevant or topically
irrelevant, we consider a basis formed by two orthogonal vectors |T+) and |T—)
respectively. Before a user considers a judgement of topicality, the cognitive state
is indefinite with respect to considering the document as topically relevant or
irrelevant. Both potentialities exist. We say that the cognitive state collapses to
either |T+) or |T—) after the judgement. Before the judgement, we can represent
the indefinite cognitive state in terms of probabilities of its potential responses.
This is represented as a linear combination of the two basis states, weighted
each by real or complex coefficients (called probability amplitudes), such that
the square of the probability amplitude gives the probability of collapsing to the
respective state. The initial state S is thus written as:

|S) =t|T+) +V1—-t2|T—) (1)

I T T R R

Queryl P(T=+)=0.762 P(U=+|T+)=0578 P(R=+|U=+T=+)=0587 P(R=+|T+)=0.546 P(U=+|R=+T=+) = 0.600
P(R = -|U=+T=+) = 0.413 P(U = -|R=+T=+) = 0.400

P(U=-|T+)=0.422  P(R=+|U=T=+)=0.370 P(R=-|T+)=0454 P(U=+|R=-T=+) = 0.407

P(R =-|U=-T=+) = 0.630 P(U = -|R=-T=+) = 0.593
Query2 P(T=+)=0.671 P(U=+|T+)=0.802 P(R=+|U=+T=+)=0.844 P(R=+|T+)=0.731 P(U=+|R=+T=+)=0.882
P(R = -|U=+T=+) = 0.156 P(U =-|R=+T=+) = 0.118

P(U=-|T+)=0.198  P(R=+|U=T=+)=0.526 P(R=-|T+)=0.269 P(U=+|R=-T=+) = 0.480

P(R =-|U=-T=+) = 0.474 P(U = -|R=-T=+) = 0.520
Query3 P(T=+)=0.899 P(U=+|T+)=0.977 P(R=+|U=+T=+)=0.738 P(R=+|T+)=0.646 P(U=+|R=+T=+) = 0.963
P(R = -|U=+T=+) = 0.262 P(U =-|R=+T=+) = 0.037

P(U=-|T+)=0.023  P(R=+|U=T=+)=0.000 P(R=-|T+)=0.354 P(U=+|R=-T=+) = 0.889

P(R = -|U=-T=+) = 1.000 P(U=-|R=-T=+)=0.111

Fig. 2. Probabilities for the questions of TUR and TRU for the three queries
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In the S-G inspired experiment design, we ask the user sequential questions
about judgement of Topicality (T), Understandability (U) and Reliability (R) in
the order TUR or TRU, as shown in Fig. 1. Therefore we represent the cognitive
state w.r.t Understandability and Reliability in term of Topicality:

[U+)=u|TH+)+V1—uw?|T—),|U=)=vV1—u?|T+) —u|T-) (2)

|U—) is constructed using the fact that [U+) and |U—) are orthogonal. u? is the
probability that users judge a document Understandable, given that they have
judged it as Topically relevant.

Refer to [19] (Section3) or [15] (Chapter 1) for the necessity of using a
complex-valued probability amplitude in the representation of Reliability in term
of Topicality:

T=),|R=) = V1= 27 [T+) = r[T=) (3)

The parameters (u, r and 6,.) comprise the construction of the Hilbert space
for user’s cognitive state w.r.t the interaction between the three dimensions. The
parameter ¢ defines the initial state. The experiment design of Fig. 1 was carried
out in [19] for three queries. The results are listed in Fig. 2.

|R+) =7 |T+) + V1 — r2ei

3 Formulation of Research Hypotheses

Using the complex-valued Hilbert Space of multidimensional relevance, this
paper aims to design an extended experiment to test the following research
hypotheses: (1) Fundamental axioms of classical Kolmogorov probability are
violated in a multidimensional relevance judgement scenario; (2) Probabilities
obtained from the experiment can be better predicted with quantum than clas-
sical (Bayesian) probabilistic models. In the following two subsections, we math-
ematically formulate these hypotheses.

3.1 Violation of Kolmogorov Probability and Quantum Correction

Quantum probabilities are generalisation of Kolmogorov probabilities. In fact,
Kolmogorov probabilities are related to set theory which formalises Boolean
logic. The following proposition gives one of their fundamental properties [11]:

0=06=P(AV B) — P(A) — P(B) + P(A A B) (4)

where A, B are subsets of the set of all alternatives {2, and P(A), P(B) are
the corresponding probabilities. The axiom will be violated if the value of § is
different from zero.

In the quantum probability theory, the computation of probabilities are rep-
resented by projection operators for the events U+ and R+ corresponding to
relevance or non-relevance with respect to Understandability and Reliability.
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The analogue of relation (4) in quantum mechanics is given by the following
definition [21]:

DU+, R+) = (U + VRE) — I(U%) — II(R+) + II(U £ ARE)  (5)
where projection operators IT(U+) and I1(R+) are given by:
I(U+) = [U£) (U], II(R+)=|R+) (R+| (6)

It is possible to prove that this quantum correction term D(U=+, R+) is propor-
tional to the commutator of the projection operators of U+ and R+ [21] and
can be thus obtained as:

DU+, R+) = [I(U),[I(R+)] (II(U+) — I(R£))™" (7)

where [A, B] stands for the commutator for two operators A and B. The pro-
jection operator IT(U+) is equal to the outer product of the state |U+) with
itself, where the vector |U+) is computed using Eq. 2. In order to construct the
vector, first the Topicality basis is represented as the standard basis and hence
the orthogonal vectors |T+) and |T'—) are given as:

0= (o). = (3) ®

Thus, vectors |U+) and |U—) are given as:
u 1—u?
o) = () 1o = (V) ©

Then the projector IT(U+) is given as:

1w = W+ = () o0 Vi) = (i V)

Similarly, IT(R+) is:

II(R+) = |R+) (R+| = (\/ﬁe%)) (r VI—r2eifr)

_ r2 ry/1 — r2e=i0r
T \ry1 = r2eifr 1—r2

From the values of u, r and 6, obtained in [19], these projection operators can be
constructed. The quantum analogue of 4, can then be calculated from Eq. (7).
Value of § obtained from our experiment is compared to that predicted by the
classical (always zero) and quantum probability frameworks.
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3.2 Quantum Probabilities vs Classical Probabilities

The violation of Kolmogorovian probability axiom by a given system would likely
lead to inaccurate predictions on the system using Kolmogorovian probability.
This subsection formulates computation of conditional probabilities of relevance
judgement along one dimension given another, using classical vs. quantum frame-
works. They will be compared for our experimental data in Sect. 5.

For an initial state of the system |S), the probability of event |T+) in the
quantum framework is given by P(T+) = | (T+|S) |? = 2, i.e., square of projec-
tion of vector |S) onto vector |T+). The probability for sequence U+ following
T+ is given as [2]:

P(U+,T+) = [(UHT+) P[{T+|S) | (10)
The quantum framework does not define joint probability of events 7' and
U, as in general P(T+,U+) # P(U+,T+). As we can see P(T+,U+) =
[{(T+|U+) |?| (U+|S) |2, which for (U+]S) # (T+]|S) isnot equal to P(U+, T+) in
Eq. 10. The conditional probabilities are given according to Luder’s rule [2,10] as:

P,(U+|T+)=PU+,T4)/P(T +|S) (11)
| (UHIT+) P| {(T+]5) |
[(T+S) 2
= [({UHT+) [ = v’

Note that subscript ¢ is added to distinguish from classical conditional proba-
bility. Then P, (R + |U+,T+) is given as (see [19] Sect. 4.2 for derivation):

Py(R+|U+,T+) = [ (R+|U+) | (12)
= (ur)® + (1 —u?)(1 — 72) 4+ 2ury/(1 — u2)(1 — 72) cos b,

In contrast, classical probability theory has the basic assumption of commutativ-

ity of two events. Therefore the joint probability distribution always exists, which

is the basis of calculating conditional probabilities in Bayes’ rule. Consequently,
for events T, U and R we have:

P(U+,R+,T+) = P(R+,U+,T+) (13)
which can be written in terms of conditional probabilities as:
P(T+)P(R+|T+)P(U+|R+,T+) = P(T+)P(U+|T+)P(R+|U+,T+) (14)
This enables calculation of conditional probabilities using the Bayes rule:
P(U + |R+,T+)P(R+ |T+)
PU +|T+)

Similarly, the other conditional probabilities can be obtained. Again, note that
the probabilities in Egs. (15) and (12) are different because of the difference in
the underlying assumption of commutativity or joint probability.

PR+ |U+,T+) = (15)
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4 Experiment

4.1 Methodology

The main aim of this experiment is to investigate the violation of Eq.4. We
already have the single question probabilities from the experiment in [19] and
we need to obtain the probabilities of conjunction and disjunction. We do so by
posing questions about Understandability and Reliability at the same time, as a
pair, rather than sequentially. Each of the dimensions have two outcomes (e.g.
Reliable or Not Reliable) and therefore we construct four pairs of statements,
as listed in Fig. 4. For the disjunction measurement, we ask the participants to
select whether they agree with at least one of the two statements or none of them
(corresponding to a Boolean Or condition). For a conjunction measurement on
each of the four statement pairs, we ask the participants whether they agree
with both of the questions or not. Figure5a and b show the designs for the
disjunction and conjunction questions for a query-document pair. We now have
a total of eight such questions and we follow a between-subjects design such
that a participant is shown only one of these eight questions randomly. Note
that we are able to use the probabilities from the experiment in [19] because our
experiment is a between-subjects design. The same participant is not asked all
the questions - to avoid memory bias. The design is summarised in the following
steps for each of the three query-document pairs:

1. The participants are shown information need, query and document snippet.

2. Next, they are asked a Yes/No question about the Topicality of the docu-
ment. This is to prepare the cognitive state of all participants by projecting
their initial /background state onto the Topicality subspace of the underlying
Hilbert space constructed in the previous experiment in [19].

3. Lastly, they are randomly shown one of the eight possible conjunction or
disjunction questions and asked to choose the appropriate answer (Fig. 3).

4.2 Participants and Material

We recruited 335 participants for the experiment using the online crowd-sourcing
platform Prolific (prolific.ac). The study was designed using the survey platform
Qualtrics (qualtrics.com/uk). The participants were paid at a rate of £6.30/h.
We sought the participants’ consent and complied with the local data protec-
tion guidelines. The study was approved by The Open University UK’s Human
Research Ethics Committee with reference number HREC/3063/Uprety.

P(U+V R+) P(U+ A R+)

9 1/4' P(U- V R+) 9 7’ /,: P(U- AR+)
| P(U+V R — P(U+AR])

P(U-V R-) P(U- AR-)

(a) Design for disjunction question (b) Design for conjunction question

Fig. 3. Experiment design
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Statement Pairs

A. It is Easy to Understand the information presented in the document snippet.
B. The information presented in the document snippet is Reliable.

A. It is Not Easy to Understand the information presented in the document snippet.
B. The information presented in the document snippet is Reliable.

A. It is Easy to Understand the information presented in the document snippet.
B. The information presented in the document snippet is Not Reliable.

A. It is Not Easy to Understand the information presented in the document snippet.
B. The information presented in the document snippet is Not Reliable.

Fig. 4. Four pairs of statements for conjunction and disjunction questions

We use the same set of three query-document pairs for our experiment as
used in [19], as we have reused some of their data. Each participant was shown
the three queries (and the documents) and were asked to judge the topicality
of the document and one of the eight questions (so we obtain probabilities like
P(U 4+ VR + |T+), etc.) Thus the participants can be said to be divided into
eight groups for a between-subjects design.

If you AGREE WITH AT LEAST ONE OR BOTH of the following statements, click the button on the left.

If you DO NOT AGREE WITH ANY of the two statements, click the button on the right. If you AGREE WITH BOTH of the following statements click the button on the left.
‘Then click on Next button to proceed o next question. 'OTHERWISE click the button on the right.
Then click on Next button to proceed to next question.
A. ltis Easy to the infor presented in snippet. A. Itis Easy to Understand the information presented in the document snippet.
B. The information presented in the document snippet is Reliable. B. The information presented in the document snippet is Reliable.
Agree with at least one Agree with none of them Agree with both Agree with only one or none
O O o) fe)
(a) Design for disjunction question (b) Design for conjunction question

Fig. 5. Conjunction/disjunction question design

5 Results and Discussion

5.1 Violation of Kolmogorov Probability Axiom

The probabilities of conjunction and disjunction of the Understandability and
Reliability questions are reported in Fig. 6. In order to compute the § reported in
Eq. 4, we also need the two probabilities related to single questions U+ and R+,
apart from the conjunction and disjunction probabilities. These single question
probabilities are obtained from the results in [19] (listed in Fig.2). Then, we
calculate 6 = P(U £ VR +|T+) + P(U £ AR+ |T+) — P(R+ |T+) — P(U +
|T+). In Fig.6 we see that 0 is different from zero for all the three queries,
although according to classical probability we expect that § would be zero in all
cases. Eq. (7), based on the projection operators in quantum probability, gives
predictions of §, as are shown in the last column of the table.
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The violation of classical probability is a result of non-commutative structure
of operators for U and R. As we can see, if operators of U and R commute with
each other, the quantum correction term in the Eq.(7) approaches zero (the
commutator is zero). In fact, the probability values obtained may violate some of
the other basic axioms of classical/Kolmogorovian probability. For example, for
Query 2, we can see that P(U—AR+|T+) = 0.414 and P(U—|T+) = 0.198 which
clearly violates P(A, B) < P(A). Also, for this query, P(U—AR—|T+) is greater
than both P(U — |T+) and P(R — |T+). This type of violation has been termed
as conjunction fallacy in the cognitive science literature [18]. Quantum models
have been previously used to explain such violation [3] where the fundamental
notion of incompatibility in judgements is identified as the potential cause.

[y |Eeeeisn — [Goaaives [ 6 |[Ew |

P(U+V R+[T=+)=0641  P(U+AR+|[T=+)=0308 -0175 -0.124
P(U-VR+|T=+)=0826  P(U-AR+[T=+)=0393 0251 0.032
Queryl pyiyR-|T=+)=0.774  P(U+AR-|T=+)=0241 -0.017 -0.032
P(U-VR-|T=+)=0656  P(U-AR-|T=+)=0435 0215 0.124
P(U+V R+[T=+)=0792  P(U+AR#|T=+)=0692 -0.049 -0.533
Query2 P(U-VR#[T=H=0714  P(U-AR[T=+=0414 0199 0071
P(U+VR-|T=#)=0.692  P(U+AR-|T=+)=0321 -0.058 -0.071
P(U-VR-|T=+)=0536  P(U-AR-|T=+)=0368 0437 0.533
P(U+V R+[T=+)=0.943  P(U+AR+[T=+=0700 002  -0.623
Query3 P(U-VR+[T=H=0562  P(U-AR+[T==0234 0127 0331
P(U+VR-|T=+)=0907  P(U+AR-|[T=+)=0378 -0.046 -0.623
P(U-VR-|T=+) =0535  P(U-AR-|T=+)=0283 0354 0331

Fig. 6. Probabilities for conjunction and disjunction questions and associated violation
from Kolmogorovian probability

5.2 Comparison of Quantum and Classical Probability Predictions

Figure 7 shows a comparison between quantum and classical probabilities with
the experimental data for first two queries. The data for Query 3 had many
probabilities close to 0 (see Fig.2) and hence the sample became too small for a
meaningful comparison. The probabilities are calculated for prediction of judge-
ment of Reliability given the participant has judged Understandability and Topi-
cality (positively), using equations derived in Sect. 2.1. Bayesian probabilities, in
some cases, are significantly different from experimental data (P(R+ |[U—,T+)
for query 1 and P(R — |[U—,T+) for query 2). Quantum probabilities are con-
sistently closer to the experimental data.
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The Bayesian probabilities, as mentioned earlier, are based on the chain
rule P(R+,U+,T+) = P(R+ |U+,T+)P(U + |T+)P(T+). The fundamental
assumption here is that the variables corresponding to R, U and T can be jointly
measured. In terms of the judgement process, this implies that a user can jointly
consider information regarding the Reliability, Understandability and Topicality
of a document with respect to the query. The incompatibility revealed in [19]
and the order effects shown in [1] suggest that this is not always the case in
general. Therefore we see Bayesian predictions deviate from the experimental
data. As the quantum probability theory based on the Hilbert space model is free
from this assumption of compatibility, it provides a promising alternative model
that gives predictions closer to the experimental data. In fact, the modelling of
incompatibility of different judgement perspectives forms one of the pillars of
the Quantum Cognition research framework.

Query 1 Query 2

07 00807 09 04

06 08

05 0.413 0.7

04 of 0526 0 and52

04 o 8. 0474
05

03 oh

01 0.15§ , 0.161

, o =

Fig. 7. How quantum and classical probabilities compare with the experimental data
for query 1 and query 2

6 Implications for IR

Quantum models can capture richer cognitive interactions, by way of generalising
some of the constraints of classical models like commutativity. Here we discuss a
few cases where our findings can inform the design of IR systems and algorithms.

The impossibility of jointly modelling Reliability and Understandability
(which leads to the Kolmogorovian axiom violations) can be attributed to the
fact that humans make decisions in a sequential manner and consideration of
one dimension affects the judgement of the next dimension. Therefore, differ-
ent orders of consideration of dimensions would lead to different final relevance
judgements, making the order a factor in the variability of relevance judgements
by users. When using an IR system to perform a task or make an important deci-
sion, there might be a particular order of dimensions which can lead the user to
make an optimal decision. For example, for a health related query, a user might
find a document difficult to understand, which may affect his or her judgement of
Reliability and hence the overall relevance. However, if another user first judges
reliability and finds it highly reliable, the judgement of understandability might
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be different. The IR system can help users to consider the optimum sequence of
dimensions and thus maximise the utility, by providing extra information. For
example, if the system can also provide information about the Reliability of the
document in terms of a Reliability score or ratings by other users, it can reduce
uncertainty in judgement and thus minimise the influence of judgement of other
dimensions. Thus, for the given medical document, the low understandability
might not affect the perception of Reliability.

Secondly, quantum probabilistic models can replace Bayesian models used in
IR algorithms for ranking and evaluation. For example, in [13], a multidimen-
sional evaluation metric is proposed where the gain provided by a document is
written as a function of the joint probability of relevance with respect to differ-
ent dimensions, e.g. P(T,U, R,...). Similar assumptions have also been made in
[12,25]. For documents exhibiting incompatibility between different dimensions,
predictions from such a model will be inaccurate. A probabilistic model based on
non-commutative operator algebra, accounting for the incompatibility between
different dimensions, needs to be considered.

Finally, these results of violation of classical probability theory calls for fur-
ther user behaviour experiments to be conducted in IR that further exploit the
Quantum-like Structure in human judgements. It would require novel experimen-
tal protocols like that of Stern-Gerlach, Double-slit experiment, etc., to generate
data beyond the modelling capacity of classical probability theory. Such experi-
ments in themselves might lead us to new insights into user behaviour in IR and
information based decision-making in general.

7 Conclusion

Extending a quantum-inspired experiment protocol, in this work, we begin with
the hypothesis that the multidimensional property of relevance has an under-
lying quantum cognitive structure which can be shown as violation of certain
classical (Kolmogorovian) probability axioms. A particular experimental design
is reported which can exploit the quantum cognitive structure. The data shows
violation of one of Kolmogorovian probability axioms. We further show that
quantum probability theory is a better alternative to model multidimensional
relevance judgements than its classical counterpart, i.e. Bayesian model. Finally,
we highlight important implications of our research findings to the design of IR
algorithms system and user experiments.
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