
Artificial Intelligence

Lecture 7: Reinforcement Learning



Review: Artificial Intelligence

• Supervised learning
– Classification
– Regression

• Unsupervised learning
– Clustering
– Dimensionality reduction

• Reinforcement learning
– more general than supervised/unsupervised learning
– learn from interaction w/ environment to achieve a goal

environment

agent

actionreward
new state



Review: Markov Decision Process (MDPs)

Definition: Markov decision process

States: the set of states
sstart ∈States: starting state
Actions(s): possible actions from state s
T(s,a,s’): probability of s’ if take action a in state s

Reward (s,a,s’): reward for the transition (s, a,s’)

IsEnd(s): whether at end of game

0 ≤ γ ≤ 1: discount factor (default: 1)



Review: Markov Decision Process (MDPs)

• Following a policy π produces a path (episode)

s0; a1, r1, s1; a2, r2, s2; a3, r3, s3; ...; an, rn, sn

• Value function Vπ(s): expected utility if follow π from state s

• Q-value  function Qπ(s,a): expected utility if first take action a 
from state s and then follow π
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Unknown transitions and rewards

Definition: Markov decision process

States: the set of states
sstart ∈States: starting state
Actions(s): possible actions from state s

IsEnd(s): whether at end of game

0 ≤ γ ≤ 1: discount factor (default: 1)



Learn to make good sequences of decisions



Learning from Experience Plays a Role in …
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Psychology

Artificial Intelligence

Artificial Neural Networks

Reinforcement
Learning (RL)

Neuroscience

Control Theory and
Operations Research



What is Reinforcement Learning

Fundamental challenge in artificial intelligence and machine 
learning is learning to make good decisions under uncertainty
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What is Reinforcement Learning

§ People and animals learn by interacting with our environment
§ This differs from certain other types of learning

• It is active rather than passive
• Interactions are often sequential — future interactions can depend on earlier 

ones

§ We are goal-directed
§ We can learn without examples of optimal behaviour
§ Instead, we optimise some reward signal
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The reward hypothesis

Reinforcement learning is based on the reward hypothesis:

Any goal can be formalized as the outcome of maximizing a cumulative reward
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2010s: New Era of RL. Atari
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Before any training In early stages of training In later stages of training

https://www.youtube.com/watch?v=V1eYniJ0Rnk

DeepMind Nature, 2015

https://www.youtube.com/watch?v=V1eYniJ0Rnk


Mystery game
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Example: mystery buttons

For each round r = 1, 2, . . .
• You choose A or B.

• You move to a new state and get some rewards.

Start A B

Rewards:State: 5,0 0



Mystery game
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Example: mystery buttons

For each round r = 1, 2, . . .
• You choose A or B.

• You move to a new state and get some rewards.

Start A B

Rewards:State: ? ?



Double Bandits

Slides borrowed or adapted from Dan Klein and Pieter Abbeel (ai.berkeley.edu)



Offline Planning

§ Solving MDPs is offline planning
§ You determine all quantities through computation
§ You need to know the details of the MDP
§ You do not actually play the game!

Play Red

Play Blue

Value

No discount
100 time steps

Both states have 
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0



Let’s Play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0



Online Planning

§ Rules changed!  Red’s win chance is different.

W L

$1

1.0

$1

1.0

?? $0

?? 
$2

?? $2

?? 
$0



Let’s Play!

$0 $0 $0 $2 $0
$2 $0 $0 $0 $0



What Just Happened?

§ That wasn’t planning, it was learning!
§ Specifically, reinforcement learning
§ There was an MDP, but you couldn’t solve it with just computation
§ You needed to actually act to figure it out

§ Important ideas in reinforcement learning that came up
§ Exploration: you have to try unknown actions to get information
§ Exploitation: eventually, you have to use what you know
§ Regret: even if you learn intelligently, you make mistakes
§ Sampling: because of chance, you have to try things repeatedly
§ Difficulty: learning can be much harder than solving a known MDP



From MDPs to reinforcement learning

Markov decision process (offline)
• Have mental model of how the world works.

• Find policy to collect maximum rewards.

Reinforcement learning (online)

• Don’t know how the world works.

• Perform actions in the world to find out and collect
rewards.



Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning



Reinforcement Learning

§ Basic idea:
§ Receive feedback in the form of rewards
§ Agent’s utility is defined by the reward function
§ Must (learn to) act so as to maximize expected rewards
§ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r



Reinforcement Learning

Environment

Agent

Actions: a
state: s’

reward: r

Algorithm: reinforcement learning

For t = 1, 2, 3, . . .
Choose action at = πact(st−1) (how?) 
Receive rewardrt and observe new state st
Update parameters (how?)



Reinforcement Learning

§ Still assume a Markov decision process (MDP):
§ A set of states s Î S
§ A set of actions (per state) A
§ A model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy p(s)

§ New twist: don’t know T or R
§ I.e. we don’t know which states are good or what the actions do
§ Must actually try out actions and states to learn



Model-Based Learning

§ Model-Based Idea:
§ Learn an approximate model based on experiences
§ Solve for values as if the learned model were correct

§ Step 1: Learn empirical MDP model
§ Count outcomes s’ for each s, a
§ Normalize to give an estimate of
§ Discover each when we experience (s, a, s’)

§ Step 2: Solve the learned MDP
§ For example, use value iteration, as before



Model-Based Learning

Data: s0; a1 , r1 , s1; a2 , r2 , s2; a3 , r3 , s3; . . . ;an , rn , sn

Transitions:

Rewards:

Estimate the MDP: T (s, a, s’) and Reward(s, a, s’)

Key idea: model-based learning



Model-Based Learning

Data (following policy π(s) = stay):

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]

Transition?
Reward?

in,stay

in,quit end

in stay
(?): $?

(?): $?quit

?: $?



Model-Based Learning

Data (following policy π(s) = stay):

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]

in,stay

in,quit end

in stay
(?): $4

(?): $4quit

?: $?



Model-Based Learning

Data (following policy π(s) = stay):

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]

in,stay

in,quit end

in stay
(3/4): $4

(1/4): $4quit

?: $?



Model-Based Learning

Data (following policy π(s) = stay):

[in; stay, 4, in; stay, 4, end]

New Transition?

in,stay

in,quit end

in stay
(3/4): $4

(1/4): $4quit

?: $?



Model-Based Learning

Data (following policy π(s) = stay):

[in; stay, 4, in; stay, 4, end]

in,stay

in,quit end

in stay
(4/6): $4

(2/6): $4quit

?: $?



Model-Based Learning

Data (following policy π(s) = stay):

[in; stay, 4, end]

New Transition?

in,stay

in,quit end

in stay
(4/6): $4

(2/6): $4quit

?: $?



Model-Based Learning

Data (following policy π(s) = stay):

[in; stay, 4, end]

§ Estimates converge to true values (under certain conditions)
§ With estimated MDP (T, Reward), compute policy using value iteration

in,stay

in,quit end

in stay
(4/7): $4

(3/7): $4quit

?: $?



Model-Based Learning

Problem: ?

in,stay

in,quit end

in stay
(4/7): $4

(3/7): $4quit

?: $?



Model-Based Learning

Problem: won’t even see (s, a) if a ≠π(s) (a = quit)

§ Different from classical ML, where data comes passively and learns good function.
§ Key challenge in RL, need to figure out how to get the data.

in,stay

in,quit end

in stay
(4/7): $4

(3/7): $4quit

?: $?

To do reinforcement learning, need to explore the state space.

Key idea: exploration



Model-Based Learning

Problem: won’t even see (s, a) if a ≠π(s) (a = quit)

Solution: need π to explore explicitly 

in,stay

in,quit end

in stay
(4/7): $4

(3/7): $4quit

?: $?

To do reinforcement learning, need to explore the state space.

Key idea: exploration



Model-Based Learning

Data (following policy π(s) = quit):

[in; quit, R, end]

Transitioning?
Reward?

in,stay

in,quit end

in stay
(4/7): $4

(3/7): $4quit

?: $?



Model-Based Learning

Notes:

§ Our policies have been deterministic. However, if we use such a policy to generate
data, there are certain (s, a) pairs that we will never see and, therefore, never be
able to estimate their Q-value and never know what the effect of those actions are.

§ This problem points at the most important characteristic of reinforcement learning,
which is the need for exploration.

§ This distinguishes reinforcement learning from supervised learning, because now
we actually have to act to get data, rather than just having data poured over us.

§ if π is a non-deterministic policy that allows us to explore each state and action 
infinitely often (possibly over multiple episodes), then the estimates of the 
transitions and rewards will converge.

§ Once we get an estimate for the T and R, we can simply plug them into our MDP 
and solve it using standard value or policy iteration to produce a policy.



From model-based to model-free

All that matters for prediction is (estimate of) Qopt(s, a).

Key idea: model-free learning

Try to estimate Qopt(s, a) directly.



Model-Free Learning



Model-free Learning

Data (following policy π):

s0; a1,r1,s1; a2,r2,s2; a3,r3,s3; ...;an,rn,sn

Recall:

Q π (s, a) is expected utility starting at s, first taking action a, and then
following policyπ

Utility:
ut = rt + γ ·r t + 1 + γ 2 ·r t + 2 + ···

Estimate:
Q̂ π(s, a) = average of ut where s t − 1 = s , at = a

(and s , a doesn’t occur in s 0 , ··· , s t −2)



Model-free Learning

Data (following policy π(s) = stay):

[in; stay, 4, end]

Utility?

in,stay

in,quit end

in stay
(?): $?

(?): $?quit

?: $??

?



Model-free Learning

Data (following policy π(s) = stay):

[in; stay, 4, end]

in,stay

in,quit end

in stay
(?): $?

(?): $?quit

?: $??

4



Model-free Learning

Data (following policy π(s) = stay):

[in; stay, 4, in; stay, 4, end]

Utility?

in,stay

in,quit end

in stay
(?): $?

(?): $?quit

?: $??

4



Model-free Learning

Data (following policy π(s) = stay):

[in; stay, 4, in; stay, 4, end]

in,stay

in,quit end

in stay
(?): $?

(?): $?quit

?: $??

(4+8)/2



Model-free Learning

Data (following policy π(s) = stay):

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]

Utility?

in,stay

in,quit end

in stay
(?): $?

(?): $?quit

?: $??

(4+8)/2



Model-free Learning

Data (following policy π(s) = stay):

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]

in,stay

in,quit end

in stay
(?): $?

(?): $?quit

?: $??

(4+8+16)/3



Model-free Learning

Data (following policy π(s) = stay):
[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]

Note: we are estimating Qπ now, not Qopt

in,stay

in,quit end

in stay
(?): $?

(?): $?quit

?: $??

(4+8+16)/3



Model based vs model-free

?



Model-free Learning (equivalences)

Data (following policy π):



Model-free Learning (equivalences)



Model-free Learning (equivalences)

Data (following policy π(s) = stay):

[in; stay, 4, end] u = 4

[in; stay, 4, in; stay, 4, end] u = 8

[in; stay, 4, in; stay, 4, in; stay, 4, end] u= 12

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end] u= 16



Using the reward + Q-value

Current estimate: Q̂ π (s , stay) = 11

Data (following policy π(s) = stay):

[in; stay, 4, end] 4+0

[in; stay, 4, in; stay, 4, end] 4+11

[in; stay, 4, in; stay, 4, in; stay, 4, end] 4+11

[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end] 4+11



Model-free versus SARSA

Key idea: bootstrapping

SARSA uses estimate Q̂π(s, a) instead of just raw data u.

u
based on one path

large variance
wait until end to update

r + Q̂ π(s , a ) based on

estimate 

small variance
can update immediately



Question

Which of the following algorithms allows you to estimate Qopt(s, a) (select all that
apply)?

model-based learning

model-free learning

SARSA



Passive Reinforcement Learning



Passive Reinforcement Learning

§ Simplified task: policy evaluation
§ Input: a fixed policy p(s)-- told what to do
§ You don’t know the transitions T(s,a,s’)
§ You don’t know the rewards R(s,a,s’)
§ Goal: evaluate how good an optimal policy is,

learn the expected utility U for each s
§ In this case:

§ Learner is “along for the ride”
§ No choice about what actions to take
§ Just execute the policy and learn from experience
§ This is NOT offline planning!  You actually take actions in the world.



Direct Evaluation

§ Goal: Compute values for each state under p

§ Idea: Average together observed sample 
values
§ Act according to p
§ Every time you visit a state, write down what the 

sum of discounted rewards turned out to be
§ Average those samples

§ This is called direct evaluation



Problems with Direct Evaluation

§ What’s good about direct evaluation?
§ It’s easy to understand
§ It doesn’t require any knowledge of T, R
§ It eventually computes the correct average values, using just sample 

transitions

§ What bad about it?
§ It wastes information about state connections
§ Each state must be learned separately
§ So, it takes a long time to learn



Adaptive Dynamic Programming (ADP)

• Smarter method than Direct Utility Estimation.
• Estimating the utility of a state as a sum of reward for being in that 

state and the expected discounted reward of being in the next state.
• Converges fast but can become quite costly to compute for large 

state spaces.
• ADP is a model-based approach
• ADP adjusts the utility of s with all its successor states



Temporal Difference Learning (TD)

• model-free approach
• not require to learn the transition model
• update occurs between successive states and agent only updates 

states that are directly affected
• TD learning adjusts the utility of s with that of a single successor state 

s’



Problems with TD Value Learning

§ TD value leaning is a model-free way to do policy evaluation
§ However, if we want to turn values into a (new) policy, we’re sunk:

§ Idea: learn Q-values, not values
§ Makes action selection model-free too!

a

s

s, a

s,a,s’
s’



Active Reinforcement Learning



Active Reinforcement Learning

Problem: model-free and SARSA only estimate  Qπ , but  want Qopt
to act optimally

Output
Qπ   

Qopt

MDP
policy evaluation  
value iteration

reinforcement learning
model-free, SARSA
Q-learning



Active Reinforcement Learning

§ Full reinforcement learning: optimal policies (like value iteration)
§ You don’t know the transitions T(s,a,s’)
§ You don’t know the rewards R(s,a,s’)
§ You choose the actions now
§ Goal: learn the optimal policy / values

§ In this case:
§ Learner makes choices!
§ Fundamental tradeoff: exploration vs. exploitation
§ This is NOT offline planning!  You actually take actions in the world and 

find out what happens…



Q-Learning

MDP recurrence:



SARSA versus Q-learning



Q-Learning Properties

§ Amazing result: Q-learning converges to optimal policy --
even if you’re acting suboptimally!

§ This is called off-policy learning

§ Caveats:
§ You have to explore enough
§ You have to eventually make the learning rate

small enough
§ … but not decrease it too quickly
§ Basically, in the limit, it doesn’t matter how you select actions (!)



How to Explore?

Algorithm: reinforcement learning

For t = 1, 2, 3, . . .
Choose action at = πact(st−1) (how?) 
Receive reward rt and observe new state st

Update parameters (how?)

s0; a1, r1, s1; a2, r2, s2; a3, r3, s3; ...;an, rn, sn

Which exploration policy πact to use?



Exploration/exploitation tradeoff

§ No exploration, all exploitation

§ No exploitation, all exploration



Exploration/exploitation tradeoff

Key idea: balance

Need to balance exploration and exploitation.

Examples from life: restaurants, routes, research



How to Explore?

§ Several schemes for forcing exploration
§ Simplest: random actions (e-greedy)

§ Every time step, flip a coin
§ With (small) probability e, act randomly
§ With (large) probability 1-e, act on current policy

§ Problems with random actions?
§ You do eventually explore the space, but keep 

thrashing around once learning is done
§ One solution: lower e over time
§ Another solution: exploration functions for large 

state space



e-greedy



Q-Learning

Stochastic gradient update:

This is rote learning: every Qopt(s, a) has a different value

Problem: doesn’t generalize to unseen states/actions



Function approximation



Function approximation



Covering the unknown

Epsilon-greedy: balance the exploration/exploitation tradeoff

Function approximation: can generalize to unseenstates



Summary so far

• Online setting: learn and take action in the real world!

• Exploration/exploitation tradeoff

• Monte Carlo: estimate transitions, rewards, Q-values from data

• Bootstrapping: update towards target that depends on 
estimate  rather than just raw data



Applications- Autonomous cars

https://link.springer.com/article/10.1007/s42154-020-00113-1



Applications- Healthcare

Reinforcement Learning in Healthcare: A Survey



Applications

Autonomous helicopters: control helicopter to do maneu-
vers in the air

Backgammon: TD-Gammon plays 1-2  
against itself, human-level performance

million games

Elevator scheduling; send which elevators to which floors  
to maximize throughput of building

Managing datacenters; actions: bring up and shut down  
machine to minimize time/cost



Deep reinforcement learning

• Policy gradient: train a policy π(a | s) (say, a neural network) to  
directly maximize expected reward

• Google DeepMind’s AlphaGo (2016), AlphaZero (2017)

• Andrej Karpathy’s blog post

http://karpathy.github.io/2016/05/31/rl

https://www.youtube.com/watch?v=SUbqykXVx0A

http://karpathy.github.io/2016/05/31/rl
https://www.youtube.com/watch?v=SUbqykXVx0A

