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Abstract—Recently, unsupervised cross-dataset person re-
identification (Re-ID) has attracted more and more attention,
which aims to transfer knowledge of a labeled source domain to
an unlabeled target domain. There are two common frameworks:
one is pixel-alignment of transferring low-level knowledge and the
other is feature-alignment of transferring high-level knowledge.

In this paper, we propose a novel Recurrent Auto-Encoder
(RAE) framework to unify these two kinds of methods and
inherit their merits. Specifically, the proposed RAE includes three
modules, i.e. a feature-transfer module, a pixel-transfer module
and a fusion module. The feature-transfer module utilizes an
encoder to map source and target images to a shared feature
space. In the space, not only features are identity-discriminative,
but also the gap between source and target features is reduced.
The pixel-transfer module takes a decoder to reconstruct original
images with its features. Here, we hope the images reconstructed
from target features are in source-style. Thus, the low-level
knowledge can be propagated to the target domain. After
transferring both high- and low-level knowledge with the two
proposed module above, we design another bilinear pooling
layer to fuse both kinds of knowledge. Extensive experiments
on Market-1501, DukeMTMC-ReID and MSMT17 datasets show
that our method significantly outperforms either pixel-alignment
or feature-alignment Re-ID methods, and achieves new state-of-
the-art results.

Index Terms—Person Re-Identification, Unsupervised Learn-
ing, Generate Adversarial Nets, Feature Fusion

I. INTRODUCTION

Person re-identification (Re-ID) [[1]] has attracted more and
more attention in recent years for its wide applications in
video surveillance, smart city, public security, etc. The goal of
Re-ID is to match pedestrian images under dis-joint cameras.
For any query pedestrian image in one camera, all pedestrian
images with the same identity in other cameras need to be
found. However, due to dramatic intra-class variation caused
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Fig. 1. Brief illustration of existing unsupervised cross-dataset Re-IDs and our
proposed approach. (a) Feature-transfer Re-ID methods try to transfer high-
level semantic knowledge in a pixel space by reducing the divergence between
source and target dataset. (b) Pixel-transfer Re-ID methods transfer low-level
knowledge in a pixel space by translating source images to be target-style.
(c) Our approach unifies the two types of transfer learning in a framework.
With it, we can not only simultaneously transfer both high- and low-level
knowledge, but also encourage the two knowledge enhance each other.

by the view, pose, illumination, occlusion, and small inter-class
similarity, Re-ID is still a challenging and unsolved problem.

Traditional Re-ID methods can be grouped into feature
learning based methods [2]], [3] and metric learning based
methods [4], [5]. However, those methods are limited by less-
semantic hand-crafted features or weakly-discriminative linear
metric functions. Inspired by recent progress on deep learning
[6], [7], deep supervised Re-ID methods [8], [9] have been
proposed by simultaneously learning feature representation
and distance metric with deep neural networks. However, most
of those methods are trained in a supervised way, which
requires a large number of accurately labeled data from each
camera. Considering that pedestrian images under different
scenes are dramatically different, which is known as domain
shift, directly using the model trained on one scene to another
usually performs poorly. Labeling the massive online pedes-
trian images to support supervised learning is expensive and
impractical. Those weaknesses seriously limit the scalability of
supervised person Re-ID methods. For better scalability, unsu-
pervised Re-ID methods [10], [L1], [12] are proposed, which
learn feature representation with unlabelled data. However, for
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lacking in knowledge about how the visual appearance of iden-
tical objects changes cross-cameras, unsupervised methods
typically offer weaker performances compared with supervised
counterparts. Further, semi-supervised Re-ID methods [[13] is
also proposed to improve matching accuracy by learning with
both labeled and unlabeled data. Yet, those semi-supervised
manners still require massive labeled data, which is difficult
to obtain in large-scale Re-ID applications.

Recently, Re-ID community focus on unsupervised cross-
dataset Re-ID, which tries to adapt the knowledge about cross-
camera identity information from an existing labeled dataset
(source domain) to unlabeled datasets (target domain). Exist-
ing unsupervised cross-dataset Re-ID methods can be divided
into two groups, i.e. pixel-transfer and feature-transfer Re-ID
methods. As shown in Fig. [I(a), pixel-transfer Re-ID methods
first translate labeled source data to target-like (source2target)
data via a generation model (such as GAN [14]]), then use the
target-like labeled data to train a target model in a supervised
way. Feature-transfer Re-ID methods are displayed in Fig.
b), which first train a source model with the source data
in a supervised way, then adapt the source model to the
target data by pull source and target features with distribution
distance metrics such as KL divergence. However, both types
of solutions suffer from their weaknesses. On the one hand,
feature-transfer Re-ID methods pull domain-level source- and
target-features, which may lead to semantic misalignment and
harm performance. On the other hand, for pixel-transfer Re-ID
methods, the unexpected low-level characters of resolutions,
backgrounds, and illuminations will be transferred to the target
domain.

This paper unifies both pixel-transfer and feature-transfer
learning for cross-dataset unsupervised Re-ID, which en-
joys their advantages, meanwhile overcoming shortcomings.
Specifically, we propose a novel recurrent auto-encoder
(RAE). It includes the encoder of feature-transfer learning and
the decoder of pixel-transfer learning. The encoder’s task is
to transfer feature knowledge from source to target domain
by learning a consistent feature space with a GAN loss.
Meanwhile, the decoder is to transfer pixel knowledge from
source to target domain by encouraging a feature of the target
domain to reconstruct its original images but with source-style.
Thus, the pixel knowledge can be transferred while avoiding
encoding low-level noises such as resolution, background,
and so on. Besides, to take full advantage of the source
pixel knowledge, we extract the features of the reconstructed
source-style image with the encoder and use a bilinear pooling
layer to fuse it with the feature of the original target image.
Because bilinear pooling uses second-order statistics and can
interactively model the pairwise features, both pixel-transfer,
and feature-transfer learning information is enhanced.

The main contributions of this work are summarized as
below:

(1) We explore the problem of unsupervised cross-dataset
Re-ID by unifying pixel and feature-transfer learning. To the
best of our knowledge, this is the first work towards this target
in the person Re-ID community.

(2) We propose a novel recurrent auto-encoder (RAE) which
simultaneously performs pixel- and feature-transfer learning.

In the framework, both types of transfer learning can be jointly
performed, meanwhile they can constrain and enhance each
other for a better transfer.

(3) We design a bilinear pooling layer to fuse features of
a target image and its reconstructed source-style image and
enhance the final transferring information from the source
domain to the target domain.

(4) Extensive experiments are conducted on three pedes-
trian datasets Market-1501, DukeMTMC-reID and MSMT-
17. Our proposed framework significantly outperforms either
pixel- or feature-transfer Re-IDs and achieves state-of-the-art
performance, which verifies the effectiveness of our proposed
framework.

II. RELATED WORK
A. Supervised Re-ID

Existing methods can be grouped into hand-crafted de-
scriptors [[15], [16l], [17], metric learning methods [18], [19],
[2] and deep learning algorithms [1]], [20], [21], [22], [23],
[24], [25], [26], (271, (281, [29], [30], [31], [32]. The goal
of hand-crafted descriptors is to design robust features. For
example, Ma et al. [15] handle the background and illumi-
nation variations by combining biologically inspired features
with covariance descriptors. Yang et al. [16] explore color
information by using salient color names. In [17], Liao et al.
propose an effective feature representation called local maxi-
mal occurrence, which can analyze the horizontal occurrence
of local features and maximize the occurrence to make a sta-
ble representation against viewpoint changes. Metric learning
methods are designed to make a pair of true matches have
a relatively smaller distance than that of a wrong match pair
in a discriminant manner. Zheng et al. [18] formulate person
RE-ID as a relative distance comparison learning problem
in order to learn the optimal similarity measure between a
pair of person images. The model is formulated to maximize
the likelihood of a pair of true matches having a relatively
smaller distance than that of a wrong match pair in a soft
discriminant manner. Deep learning algorithms adopt deep
neural networks to learn robust and discriminative features
in an end-to-end manner straightly. For example, Zheng et
al. [1] learn identity-discriminative features by fine-tuning a
pre-trained CNN to minimize a classification loss. In [20],
Hermans et al. show that using a variant of the triplet loss
outperforms most other published methods by a large margin.
In [21], a network named Part-based Convolutional Baseline
(PCB) is proposed to learn fine-grained part-level features with
a uniform partition strategy. Most of the existing methods are
designed for supervised Re-ID task, and can not be adapted
to unsupervised Re-ID task. This limits the applicability in
practical surveillance scenarios.

B. Unsupervised and Semi-Supervised Re-ID

To alleviate the above limitations, researchers also focus on
unsupervised person Re-ID methods using unlabeled data. For
example, Fan er al. [12] applies techniques of data clustering,
instance selection, and fine-tuning methods to obtain pseudo
labels for the unlabeled data. Nevertheless, due to the lack
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of the knowledge about identity information across cameras,
unsupervised Re-ID methods typically cannot achieve compa-
rable results as the supervised ones do. The low retrieval accu-
racy limits the practicability of unsupervised Re-ID methods.
To achieve a balance between scalability and practicability,
semi-supervised Re-ID methods are proposed to learn with
both labelled and unlabeled data. For example, Liu et al.
[13] propose a coupled dictionaries model, where a dictionary
learns labelled data to carry the relationship between features
from different cameras, and another one learns unlabeled
data to exploit the geometry of the marginal distribution.
Nevertheless, semi-supervised manners still require massive
labelled data, which is difficult to obtain in a large-scale Re-
ID system.

C. Cross-dataset Unsupervised Re-ID

For better scalability and higher retrieval accuracy, cross-
dataset unsupervised Re-ID methods are proposed, where
beside a target unlabeled dataset used to both train and test, an
extra lableled source dataset is import to enhance performance
during training. Its main idea is to transfer knowledge of
labeled source dataset to the unlabeled target dataset, so that
a high test accuracy can be achieved in the target dataset.

There are two different kinds of solutions for cross-dataset
unsupervised Re-ID, i.e. pixel-transfer and feature-transfer Re-
ID. Pixel-transfer cross-dataset unsupervised Re-IDs aims to
transfer knowledge in the pixel space. It usually includes
two stages, where firstly translate source images to fit target
images’ style (such as color, illumination, view), then uses
the adapted images to train a target model in a supervised
manner. For example, Deng et al. [33] propose a novel SPGAN
to translate source pedestrian images to target style with
preserved self-similarity and domain-dissimilarity, and use the
translated images to train a model for the target domain. Wang
et al. [34] propose a novel identity-preserving GAN named
PTGAN to transfer source data to the target domain, and use
the translated images to train a model for the target domain.
Bake et al. [35] propose to translate pedestrian images to target
domain from synthesis images of the game engine with labeled
with illumination information to solve illumination bias.

Feature-transfer cross-dataset unsupervised Re-IDs try to
transfer knowledge in the feature space. Its key point is
learning a common feature space shared by both source and
target datasets. For example, Peng er al. [36] adopt a multi-
task dictionary learning method to learn a dataset-shared but
target biased feature representation. Wang et al [37] adopt
deep architecture to learn an transferable attribute-semantic
and identity-discriminative feature, Lv et al. [38] propose to
transfer spatial-temporal patterns from source domain to target
domain. Li et al. [39] propose to use source classification and
ranking loss to learn identity-discriminative features and use
the orthogonal constraint to learn domain-invariant feature for
both source and target data.

The pixel-transfer manners can significantly reduce the low-
level divergence in the image space such as illumination
and color, but may not deal with the high-level variation
such as age, carrying, pose. Complementarily, feature-transfer

manners are good at reducing high-level variation but often
neglect low-level divergence. Different from either pixel- or
feature-transfer cross-dataset unsupervised Re-ID datasets, our
proposed approach inherent advantages of both methods and
overcome their shortcomings by unifying the two kinds of
manners. Besides, in our framework, the two types of transfer
learning enhance other, thus get better performance than that
of simply cascading them.

D. Unsupervised Domain Adaptation

Our work relates to unsupervised domain adaptation (UDA).
Recent trend consists of learning domain-invariant features
and image-level domain translation. For example, [40] aim
to learn a mapping between source and target distributions.
[41] use an adversarial approach to learn a transformation in
the pixel space from the source domain to the target domain.
[42] focus on learning domain-invariant feature space. Most
UDA methods assume that class labels are the same across
domains, while identities of different pedestrian datasets are
non-overlapping. Therefore, those UDA methods mentioned
above cannot be utilized for domain-adaptation in Re-ID.

E. Re-ID with GAN

Recently, many methods attempt to utilize GAN to generate
training samples for improving Re-ID. Zheng et al. [43]]
use a GAN model to generate unlabeled images as data
augmentation. Huang et al. [44] first assign pseudo labels
to generated pedestrian images and then learn them in a
supervision manner. Zhong et al. [43]], [46], [47] translate
images to different camera styles with CycleGAN [48]], and
then use both real and generated images to reduce inter-camera
variation. Ma et al. [49], [S0] use a cGAN [51] to generate
pedestrian images with different poses to learn features free
of influences of pose variation. Zheng et al [52]] propose joint
learning framework that end-to-end couples re-id learning and
image generation in a unified network. All those methods
focus on supervised Re-ID. Different from them, our method
utilise GAN as an objective function to reduce the gap between
source and target domains for cross-dataset unsupervised Re-
ID.

III. RECURRENT AUTO-ENCODER

Suppose there are an annotated pedestrian dataset (source
domain) {I3}Y+ labelled with identities {yf}f\%’, and an
unlabelled pedestrian dataset (target domain) {I}};,, where
N, and N, denote total images in source domain and target
domain, respectively. Our primary goal is to learn a Re-ID
model that generalizes well in the target domain by leveraging
labeled samples in the source domain and unlabeled samples in
the target domain. The key idea is to transfer pixel and feature
knowledge of how to re-identify pedestrians from the source
domain to the target one, and then fuse both knowledge.

Our proposed approach includes three modules, namely
feature-transfer module, pixel-transfer module and fusion
module. The feature-transfer module aims to learn a shared
feature space for both source and target domain with an
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Fig. 2. Overview of our proposed framework. The proposed framework includes a feature-transfer module, a pixel-transfer module and a fusion module.

Encoder Enc. It first trained using labeled images of source
domain with cross-entropy and triplet loss [20]]. In the tar-
get domain, unlabeled images are represented by features
by encoder Enc, then a clustering algorithm learns cluster
labels of samples. With the pseudo-labels, the encoder can
be refined by target images. Besides, a GAN loss [14] is
used to reduced the domain gap between source and target
features. The pixel-transfer module try to transfer the low-
level information from source to target domain with Decoder
Dec. Tt takes features as inputs and outputs images. The Dec is
first train by source images with a reconstructed loss and GAN
loss. Then backward source knowledge by force the generated
target images to be source-style. Finally, the fusion module
fuses feature-transfer and pixel-transfer module with a bilinear
pooling layer.

A. Feature-Transfer Module

The feature-transfer learning module aims to learn a shared
feature space for both source and target domain with an
encoder Enc as in Eq.(I). / mean images, F' mean corre-
sponding feature maps. We first extract identity-discriminative
knowledge from labeled source data in a supervised way and
unlabeled target data in a self-supervised (clustering) learning
way. Then to better adapt the knowledge to the target domain,
the source and target features are pulled with KL divergence.

F = Enc(I) (1)

Learning source images in a supervised way. Following
existing supervised Re-ID models [22], [9]], we first train the
encoder E'nc with labeled source images in cross-entropy loss
and triplet loss [20]. They can be formulated as below:
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where N, denotes the number of source images, p(ys.;|Is.;)

is the predicted probability of image I, ; belonging to y, i, F;
is the feature of image I; which can be computed by Eq.(T),
F;, and F;,, are the postive and negative features of F;, m
is a margin parameter.

Learning target images in self-supervised way. Since
the target images are unlabeled, following [53]], we utilise
clustering algorithm to learn their pseudo-labels, then using
the pseudo-labels to train the encoder in a self-supervised
way. The clustering procedure includes three steps: after
every epoch, 1) extracting features for all target images, 2)
computing a distance matrix with k-reciprocal encoding for
all features and then performing density-based clustering to
assign samples to different groups, 3) assigning group-index
to every images as their pseudo-labels y;. Thus, the overall
loss of this paper can be described as below:
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where N; denotes the number of target images, p(y:|1; ;) is
the predicted probability of image I;; belonging to y;,, F;
is the feature of image I; which can be computed by Eq.(T),
I}, and F;,, are the positive and negative features of I}, m
is a margin parameter.

Adapt to the target domain. Considering the gap between
source and target domains and the learned encoder may be
more biased to the source images (the encoder Enc is trained
with confident source ground truth labels but noisy target
pseudo labels), it is necessary to adapt the Enc to the target
domain. Here, we propose to adapt by pulling features from
source and target features with a GAN loss [14]. GAN loss
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can reduce the KL divergence between two distribution. Its
formulation is shown in below:
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where Dis is a discriminator to distinguish target features from
source features, iter(-,-) means iteratively optimize the two
items.

Overall Feature-Transfer loss. The overall loss of feature-
transfer module is summarised as below:

Lreat = Lieat + Lhear + Mol ©)

B. Pixel-Transfer Module

Although the feature-transfer module learns a shared feature
space for source and target domains, it only considers high-
level semantic knowledge but fails to deal with some low-
level information such as color and illumination. Recent pixel-
transfer unsupervised methods [33], [34]], [35] have shown
their powerful performance for unsupervised cross-dataset
person Re-ID. They first translates target images to be source-
style, then extract corresponding features. Thus low-level
information of source domain can be transferred to target
domain. However, due to large gap and trivial variation of raw
images, the generated images is not necessary to preserve iden-
tity information. As a consequence, those generated samples
have a serious side effect on feature learning. What’s more, ex-
isting transfer methods are two-stage procedure (first generate
images, then extract their features), which is cumbersome and
time-consuming, and difficult to deal with large-scale dataset.
Different from all existing pixel-transfer unsupervised Re-ID
methods in a forward, we choose to backward the information,
which naturally avoids the noise from unperfect generated
images.

Specifically, the pixel-transfer module utilise a Decoder Dec
to learn low-level information of source domain, and then
transfer it to target domain by making the reconstructed target
images to be source-style. The decoder Dec can be formluated

as in Eq.(I0).

I = Dec(F) (10)

Learn low-level knowledge from source domain. We
first learn low-level information from source domain with
a Decoder Dec, The Dec is trained with source data by
reconstructing source images with source features. Its loss is

shown in Eq.(TT)
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L. consists of two parts including a L2 loss and a GAN
loss. The former makes Dec easy to be optimized and the
latter encourages the reconstructed images to be less blurry and
more realistic. The two losses has been proved to be effective
by many works [54]. I is the reconstructed images with
Eq.(I0), Dis is a discriminator to distinguish reconstructed
source images I, from real images I;. Please note that the
discriminators Dis in Eq.(I3) and Eq.(8) do not share weights.
Transfer low-level pixel knowledge to target domain.
After trained by source data, the Decoder Dec contains low-
level source knowledge. Then, we transfer the low-level pixel
knowledge to target domain by forcing the target features
to reconstruct images with source-style. Thus, the low-level
source knowledge can be contained in the feature space,
meanwhile avoid encoding noisy generated images.

‘C;zuL - ‘C:econst + )‘g?:‘cgan (14)
1

ﬁ7econéﬁ Nt ;[HIl,t - Ii,t||2] (15)
1

Loan = min o ;[log Dis(I;.)], 16)

Overall pixel-transfer loss. The overall loss of the pixel-
transfer module can be summarised as below:

Lpiz = L3+ Lhin 17)

pix

C. Fusion

Review bilinear pooling. Factorized bilinear pooling has
been proven to be effective for feature fusion [S5]. Suppose
a feature map Fy/F, € R" "¢ with height h, width w and
channels c, we denote a h X w dimensional descriptor at a

channel location on F as F = [fy, fa, ..., f.]. Then the full
bilinear model is defined by
= FI'W;F, = FTU,V'F, =UI'FL o V' Fy (18)

Here, W; € R¢*¢ is a projection matrix, z; is the output of the
bilinear model. The W € R®*¢*° is a trainable parameters
to obtain a o dimenional output z. According to matrix
factorization, the projection matrix W; can be factorized in

to two one-rank vectors. U; € R¢ and V; € RC€. Thus the
output feature z € R° is given by
=P(F,F) = QT (UTFLo VT Fy) (19)

where U € RY and V € R°*? are projection matrices,
Q € R¥*° is the classification matrix, o is Hadamard product
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Algorithm 1 Training Procedure

Input: Source domain dataset S, target domain dataset T
Output: Encoder Enc, Decoder Dec, Fusion P
While unit converge:
1. predict pseudo-labels with clustering algorithm
2. optimize feature-transfer module by minimizing Eq.(9)
3. optimize pixel-transfer module by minimizing Eq.(I7)
4. optimize fusion module by minimizing Eq.(Z1)

Algorithm 2 Inference Procedure

» . T, trained Enc, Dec and

Input: target test images {I*
P
Output: features {F/'}7_,
For every target image [':
1. feature transfer F* = Enc(I') with Eq.(1)
2. pixel transfer 1'2¢ = Dec(F*) with Eq.(10)
3. repeat feature transfer F'*2* = Enc(I'?*) with Eq.(1)
4. fuse feature FP* = P(F*, F'2*) with Eq.20)
5. final feature F'P* = gap(FP!), gap is global average pooling

and d is a hyperparameter deciding the dimension of joint
embeddings.

Fuse feature-transfer and pixel-transfer modules. The
feature-transfer and pixel-transfer modules can well transfer
high-level and low-level knowledge of source domain to the
target domain. To further enhance the performance, explicitly
fuse the two modules with a bilinear pooling. The final fused
feature with bilinear pooling F? can be formulated as below:

Fpt _ P(Ft, FtZS)
. . 2 (20
FPs — rP(Fs,Fs s)
where F is the feature map of a target image I, F'* is the
feature map of a source image I°, F*?° is the feature map of
reconstructed images I*2° from F?, F*?* is the feature map
of reconstructed images I°2* from F*.

Loss. We train the fusion module with classification loss
and triplet loss, Specifically,

Efusion = E;usion + ‘Ct usion (21)

N,
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where N, denotes the number of source images, p(ys;|ls.;)
is the predicted probability of image I, ; belonging to y, i, F;
is the feature of image I; which can be computed by Eq.(T),
F;, and F; ,, are the positive and negative features of F;, m
is a margin parameter.

D. Optimization and Inference

The overall optimization and inference procedures are sum-
marised in Algorithm [T] and Algorithm [2] respectively.

IV. EXPERIMENT

Market-1501

DukeMTMC-reID

MSMT17

Fig. 3.

Examples from Market-1501, DukeMTMC-reID and MSMT17
datasets. In each row, the left/right 5 images contain the same pedestrian.

A. Datasets and Evaluation Procotols

We choose three widely used large-scale pedestrian
benchmarks Market-1501 [56], DukeMTMC-RelD and
MSMT17 to evaluate our proposed approach. Following
[33] we only adopt identity labels of source domain as
supervised information, and no attribute labels is used. Their
statistic and illustration are shown in Table [] and Fig. [3
respectively.

Market-1501. Market-1501 contains 32,668 images of
1,501 pedestrians collected from 6 camera at an university
campus. The bounding box was cropped by DPM [58]. There-
fore more background clutter and misalignment problem are
characterized. The dataset is split into two non-over-lapping
subsets, 751 identities for training and 750 identities for
testing. During the test stage, 3, 368 images are used as probes
to retrieve gallery set with 19, 732 images.

DukeMTMC-reID. DukeMTMC-relD contains 36, 441 im-
ages of 1,404 identities collected from 8 cameras. When
DukeTMTC-relD is as target dataset, we split all identities
into two halves 702/702 for training and testing. In test stage,
2,228 images are used as probes to query gallery set with
17,661 images.

MSMT17. MSMT17 is a newly released person RelD
dataset. It is composed of 126,411 person images from 4,101
identities collected by 15 cameras. The dataset suffers from
substantial variations of scene and lighting, and is more
challenging than the other two datasets.

We utilise mean average precision (mAP) to represent
overall precision and recall rates, Cumulative Matching Char-
acteristic (CMC) curve to reflect the top-k retrieval precision.

B. Implementation Details

Encoder. For a fair comparison and following most Re-ID
methods, we adopt ResNet-50 (7] pre-trained by ImageNet [6]
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Dataset Train Nums Testing Nums (ID / Image)
(ID / Image) Gallery Query
Market-1501 751 /712,936 | 750 /19,732 750 /3,368
DukeMTMC-reID | 702 /16,522 | 1,110/ 17,661 702 /2228
MSMT17 1,041 /32,621 | 3,060 / 82,161 | 3,060 / 11,659
TABLE I

DATASET DETAILS. WE EVALUATE OUR METHOD ON 3 PUBLIC RE-ID DATASETS, INCLUDING MARKET-1501, DUKEMTMC-REID AND MSMT17.

Methods Year Target:n DukeMTMC-relD Target: Market-1501
Source Rankl Rank5 Rankl0 mAP | Source Rankl Rank5 Rankl0 mAP
BOW ICCV’15 duke 25.1 - - 12.2 | market 44.4 - - 20.8
LDNS CVPR’16 duke - - - - market 61.0 - - 35.7
TriNet ArXiv’17 duke 72.4 - - 53.5 | market 84.9 - - 69.1
DuATM CVPR’18 duke 81.8 - - 64.6 | market 91.4 - - 76.6
PCB ECCV’18 duke 83.3 90.5 92.5 69.2 | market 93.8 97.5 98.5 81.6
BOW ICCV’15 none 17.1 28.8 34.9 8.3 none 35.8 52.4 60.3 14.8
LOMO CVPR’15 none 12.3 21.3 26.6 4.8 none 27.2 41.6 49.1 8.0
PUL TOMM’18 | market 30.0 43.4 48.5 16.4 duke 45.5 60.7 66.7 20.5
CAMEL CVPR’17 - - - - - duke 54.5 - - 26.3
TJ-AIDL CVPR’18 | market 44.3 59.6 65.0 23.0 duke 58.2 74.8 81.1 26.5
SyRI ECCV’18 - - - - - mix 65.7 - - -
SPGAN CVPR’18 | market 46.9 62.6 68.5 26.4 duke 58.1 76.0 82.7 26.9
HHL ECCV’18 | market 46.9 61.0 66.7 27.2 duke 62.2 78.8 84.0 314
ECN CVPR’19 | market 63.3 75.8 80.4 40.4 duke 75.1 87.6 91.6 43.0
PDA-Net ICCV’19 market 63.2 77.0 82.5 45.1 duke 75.2 86.3 90.2 47.6
UDAP CVPR’20 | market 68.4 80.1 83.5 49.0 duke 75.8 89.5 93.2 53.7
ECN++ TPAMI’20 | market 74.0 83.7 87.4 54.4 duke 84.1 92.8 954 63.8
BUC AAAT'19 none 40.4 52.5 58.2 40.4 none 61.9 73.5 78.2 29.6
CR-GAN ICCV’19 market 68.9 80.2 84.7 48.6 duke 71.7 89.7 92.7 54.0
PCB-PAST ICCV’19 market 72.4 - - 54.3 duke 78.4 - - 54.6
SSG ICCV’19 market 73.0 80.6 83.2 534 duke 80.0 90.0 924 58.3
MMCL CVPR’20 | market 72.4 82.9 85.0 514 duke 84.4 92.8 95.0 60.4
AD-Cluster CVPR’20 | market 72.6 82.5 85.5 54.1 duke 86.7 94 .4 96.5 68.3
SADA CVPR’20 | market 74.5 85.3 88.7 55.8 duke 83.0 91.8 94.1 59.8
ADTC ECCV’20 | market 71.9 84.1 87.5 52.5 duke 79.3 90.8 94.1 59.7
D-MMD ECCV’20 | market 63.5 78.8 83.9 46.0 duke 70.6 87.0 91.5 48.8
GDS-H ECCV’20 | market 73.1 - - 55.1 duke 81.1 - - 61.2
JVTC ECCV’20 | market 75.0 85.1 88.2 56.2 duke 83.8 93.0 95.2 61.1
RAE (Ours) - market 72.4 84.4 87.7 53.0 duke 85.7 94.2 96.7 69.8
MMCL + RAE (Ours) - market 75.6 84.9 87.6 54.4 duke 86.1 93.9 95.9 69.9
JVTC + RAE (Ours) - market 77.9 86.3 88.7 58.4 duke 86.9 94.3 96.1 69.0
TABLE II

COMPARISON WITH STATE-OF-THE-ART ON MARKET-1501 AND DUKEMTMC-REID. SOURCE DATASET IS USED AS LABELED ONE AND TARGET AS
UNLABELED ONE. OURS PERFORMS BEST COMPARED WITH EXISTING UNSUPERVISED CROSS-DATASET RE-ID METHODS.

as the CNN backbone. Specifically, we discard the last layer
to extract feature map, and apply dropout with 0.5 on pool5
layer for better generalization. Following [22], to get a high-
resolution feature map, the stride of the last layer is set 1.

Decoder. The decoder Dec consists of three fractional-
strided convolutional layers. Each layer but the last one utilizes
the batch normalization technique and activated by Rectified
Linear Units (RelU), and the last layer is projected to the range
[—1, 1] by tanh.

Discriminator. The discriminators in feature-transfer and
pixel-transfer modules consist of three strided convolutional
layers activated by Leaky ReLU and a FC layer to one logit.
Please note that the two kinds of discriminators do not share
weights.

We implement our approach with Pytorch framework and
trained using 4 NVIDIA TITANXP GPUs (each with 12GB

VRAM). We use the SGD algorithm with momentum 0.9 and
weight decay 5e~° as optimizer. Considering that the Encoder
Enc has well initialized with ImageNet [6], we set the learning
rate of Enc relatively small value 0.05, and the other part are
set 0.5. Following [20], we set batch size 72 = 18 x 4 for both
source and target data set, where 18 means total identities in
each batch and 4 means total images of each identity. We
train the whole model by 20,000 iterations, and the learning
rates decay by 0.1 after every 8, 000 iterations. We have three
hyper-parameters: A, )\gfizt and A7, We set Ay = 1.0,
Nfear = 10.0 and AT = 10.0 via cross-validation. More
analysis can be seen in Section (Parameters Analysis).

C. Comparisons with the State-of-the-arts

State-of-the-art methods. In this section, we compare our
method with state-of-the-art supervised and unsupervised Re-
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ID methods on Market1501 and DukeMTMC-relD datasets.
We first compare our results with two hand-crafted fea-
tures Bag-of-Words (BOW) [56] and local maximal occur-
rence (LOMO) [17]]. Those two hand-crafted features are
directly applied on the target dataset without any training
process. We then compare existing unsupervised cross-dataset
methods including feature-transfer and pixel-transfer methods.
The feature-transfer cross-dataset unsupervised Re-ID methods
includes PUL [12], CAMEL[11], TJ-AIDL[37]. The pixel-
transfer cross-dataset unsupervised Re-ID methods includes
SPGAN[33], SyRI[35], HHL[46], ECN [47], PDA-Net [59]
and UDAP [60], ECN++ [61]]. Note that, different from com-
mon setting, SyRI uses synthesis images of a 3D game engine
together with DukeMTMC and CUHK datasets as source data,
which contain more label information. Besides the transfer-
based unsupervised Re-ID methods, we also compare some
cluster-based ones, which utilise and improve clustering algo-
rithms for better robust and reliable pesudo-labels. They are
BUC [62], UCDA [63], CR-GAN [64], PCB-PAST [65], SSG
[66], MMCL [67], AD-Cluster [68], SADA [69], ADTC [70],
D-MMD [71], JVTC [72]]. What’s more, we also introduce
some supervised methods, which are straightly trained with
target data in a supervised way. They are LDNS [73]. TriNet
[20], DuATM [74] and PCB [9]. The performance evaluation
of those methods are shown in Table

Overall results. Our proposed framework clearly out-
performs existing state-of-the-art unsupervised Re-ID meth-
ods, improving mAP scores by at least 4% and 10% on
DukeMTMC-reID and Market-1501 respectively. This demon-
strates the overall performance advantages of our proposed ap-
proach in capability of simultaneous increment and translation
learning for cross-dataset unsupervised Re-ID

Comparison with hand-crafted features. When compar-
ing with unsupervised hand-crafted Re-ID methods BOW [56]]
and LOMO [17], the performance margins are even much
larger, e.g. Ours outperforms BOW/LOMO 24.7%/28.2% and
25.0%/31.8% on DukeMTMC-reID and Market-1501 datasets
respectively. This indicates that hand-crafted features are not
sufficient to describe dramatic intra-class variation.

Comparison with cross-dataset unsupervised Re-ID.
When comparing with feature-transfer or pixel-transfer un-
supervised Re-ID methods, several phenomenons can be ob-
served. Firstly, we can find that both feature- and pixel-
transfer methods significantly outperform the hand-crafted
method, e.g. PUL outperform BOW by 8.1% and 7.7% on
DukeMTMC-relD and Market-1501 datasets. This verifies that
those cross-dataset unsupervised Re-ID methods can transfer
the knowledge about identity cross-camera to target domain
from the source domain and improve the matching accuracy.
Secondly, we can find feature-transfer (TJ-AIDL) and pixel-
transfer (SPGAN) methods achieve similar performance, e.g.
only rankl gap of 2.6% and 0.1% between TJ-AIDL and
SPGAN on two datasets. But when the source dataset are
augmented by more labelled data, pixel-transfer method SyRI
outperform alignment TJ-AIDL by 8.5% on DukeMTMC-reID
in terms of Rank1, which indicates the potential of translation
Re-IDs for more labelled data. Finally, by unifying both
feature- and pixel-transfer in an end-to-end framework, our

approach significantly outperforms either feature-transfer or
pixel-transfer unsupervised cross-dataset Re-IDs, and achieves
the best performance among unsupervised cross-dataset Re-ID
methods, which demonstrates the effectiveness of our proposed
framework.

Comparison with clustering-based unsupervised Re-ID.
In the pixel-transfer module, we utilise a clustering algo-
rithm to learn pseudo-labels. Here, we also compare with
recently proposed clustering-based unsupervised Re-ID. Sev-
eral phenomenons can be observed. Firstly, most cluster-
based unsupervised Re-ID methods achieve better accuracy
than transfer-based ones. For example, JVTC get 75% Rank-
1 score in market2duke setting, outperforming ECN++ by
1%. This demonstrates the effectiveness of pseudo-labels.
Secondly, by improving clustering algorithms, such as iter-
ative trick (AD-Cluster), metric learning (D-MMD), mutual-
learning (MMCL), memory (JVTC), pseudo-labels can be
significantly improved to be more reliable and less noisy, thus
contribute to better accuracy. Specifically, in market2duke set-
ting, Rank-1 score increases from 40% of BUC (AAAI’19) to
75% of JIVTC (ECCV’20). Thirdly, since our proposed method
mainly contributes to a combination framework of feature-
transfer and pixel-transfer learning, any clustering algorithm
can be used to learn pseudo-labels, i.e. ours is compatibility
of any clustering algorithms. Using state-of-the-art clustering
algorithms such as MMCL or JVTC, we can further achieve
better accuracy. For example, powered by the proposed RAE,
JVTC+RAE (Ours) improves Rank-1 score from 75.0% to
77.9%.

Comparison with supervised Re-ID. We also compare
with supervised Re-ID methods. As we can see in Table [[I}
Supervised hand-crafted Re-ID (BOW) exceeds its unsuper-
vised version by 3.9%/6.0%, which verifies the importance of
label information. Our approach outperforms supervised hand-
crafted Re-ID BOW by 20.8%/19.0%, achieve comparable
performance with LDNS, but is still behind most deep super-
vised Re-IDs by 20.5% — 36.2% and 29.3% — 41.8%, which
shows the potentiality of unsupervised cross-dataset Re-ID.

D. Results on Large-Scale datasets

We also conduct experiments on MSMT17, a larger and
more challenging dataset. A limited number of works report
performance on MSMT17, i.e., PTGAN [34], ECN [47],
and SSG [66], ECN++ [61], MMCL [67], D-MMD [71],
NRMT [75] and JVTC [72]. The experimental results are
shown in Table As we can see, the overall performance
is much lower than that on Market-1501 and DukeMTMC-
relD, showing that the MSMT17 is much more difficult than
the others. Our approach outperforms existing methods by
large margins under both unsupervised and transfer learning
settings. For example, our method achieves 43.6%/40.8%
rank-1 accuracy respectively. This outperforms SSG by 11.4%
in rank-1 accuracy. When using state-of-the-art clustering
methods (such as MMCL and JVTC), ours can achieve better
accuracy. The above experiments demonstrate the effectiveness
of our proposed method on complex dataset.
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Methods Year Target: MSMT17 Target: MSMT17

Source Rankl Rank5 Rankl0 mAP | Source Rankl Rank5 Rankl0 mAP

PTGAN CVPR’18 | market 10.2 - 24.4 2.9 duke 11.8 - 27.4 3.3

ECN ECCV’18 | market 253 36.3 42.1 8.5 duke 30.2 41.5 46.8 10.2

SSG ICCV’19 market 31.6 - 49.6 13.2 duke 322 - 51.2 13.3

ECN++ TPAMI'20 | market 40.4 53.1 58.7 15.2 duke 42.5 55.9 61.5 16.0
MMCL CVPR’20 | market 40.8 51.8 56.7 15.1 duke 43.6 54.3 58.9 16.2
D-MMD ECCV’20 | market 20.1 46.3 54.1 13.5 duke 34.4 51.1 58.5 15.3
NRMT ECCV’20 | market 43.7 56.5 62.2 19.8 duke 45.2 57.8 63.3 20.6

JVTC ECCV’20 | market 454 58.4 64.3 20.3 duke 42.1 534 58.9 19.0

RAE (Ours) - market 40.1 50.2 55.2 14.8 duke 433 55.0 57.9 16.2
MMCL + RAE (Ours) - market 43.4 52.2 57.0 17.8 duke 46.6 57.2 59.2 19.2
JVTC + RAE (Ours) - market 47.7 60.1 66.0 22.9 duke 454 56.9 59.3 22.0

TABLE III

COMPARISON WITH THE STATE-OF-THE-ART ON MSMT17. WE UTILISE MARKET-1501 OR DUKEMTMC-REID 90 AS SOURCE DATASET. OUR
PROPOSED METHOD PERFORM BEST ON LARGE-SCALE RE-ID DATASET.

Target: DukeMTMC-reID

Target: Market-1501

Methods Source Rankl! Rank5 Rankl0 mAP | Source Rankl Rank5 Rankl0 mAP
supervised (upper bound) | duke 82.8 92.2 94.5 70.2 | market  92.1 96.8 98.4 81.4
direct-transfer market 28.1 43.9 48.4 14.6 duke 46.0 64.1 71.0 20.9
baseline market 60.8 754 79.6 45.1 duke 70.4 83.4 87.1 51.0
baseline + FT market 67.1 79.4 81.2 48.0 duke 79.1 90.1 93.5 62.7
baseline + PT market 64.5 77.9 80.6 46.8 duke 74.3 88.2 92.1 48.6
baseline + FT + PT market 69.1 81.7 82.9 50.1 duke 82.7 92.2 94.9 66.1
baseline + FT + PT + F market 72.4 84.4 87.7 53.0 duke 85.7 94.2 96.7 69.8
baseline + FT market 67.1 79.4 81.2 48.0 duke 79.1 90.1 93.5 62.7
baseline + PT market 63.0 76.0 88.9 44.8 duke 73.5 87.1 91.5 47.2
baseline + FT + PT market 67.0 79.7 82.9 49.1 duke 78.7 91.0 93.9 65.3
baseline + FT + PT + F | market 68.2 80.4 81.8 49.5 duke 80.9 91.8 94.7 66.8
TABLE IV

COMPONENT ANALYSIS. *FT’ DENOTES FEATURE-TRANSFER MODULE. "PT” MEANS (POST)-PIXEL-TRANSFER MODULE. ”F” IS FUSION MODEL.

EXPERIMENTAL RESULTS SHOW THE EFFECTIVENESS OF EVERY MODULE. ” PT”” MEANS PRE-PIXEL-TRANSFER MODULE, PLEASE VIEW TEXT FOR MORE

DETAILS.

E. Model Analysis

Components analysis. To further analyze each component
of our proposed approach, we compare the whole framework
with several variants. Firstly, as a baseline, a direct-transfer
variant is conducted, where only a Encoder Enc is trained with
source dataset and directly tested on target dataset. Secondly,
Baseline means training the Encoder Enc with source dataset
in a supervised way and target dataset in a self-supervised
way (clustering). Besides, we analyze the “"FT”, "PT” and
”F” modules, i.e. feature-transfer, pixel-transfer and fusion
modules, respectively.

The mean Average Precision (mAP) scores and cumulative
Matching Curve (CMC) are shown in Table Firstly, the
direct transfer setting performs only 20.1%/22.4%, which
indicates that the model trained on one domain cannot be
straightly adapted in another one without any adaptation strat-
egy. Secondly, the baseline significantly outperforms direct
transfer by more than 30%, showing the effectiveness of the
self-supervised learning in the target domain. Thirdly, when
using "FT”, baseline + FT, mAP scores improves about 3%
and 10% on DukeMTMC-reID and Market-1501, respectively.
This shows that GAN loss reduces the gap between source
and target features. Besides, when using "PT”, baseline + PT,
mAP scores improves about 3% and 10% on DukeMTMC-

relD and Market-1501, respectively. This shows that GAN loss
reduces the gap between source and target features. What’s
more, combining feature transfer ("FT”) and pixel-transfer
("PT”) modules outperform either FT or PT by at least 2%
and 4% mAP scores on DukeMTMC-reID and Market-1501.
This verifies the complementary between “FT” and “PT”.
Finally, the whole framework achieves the best performance
under the Fusion Module. The experimental results show the
effectiveness of each component and the complementary of
"FT” + "PT”.

Post- v.s. pre-pixel-transfer learning. Existing pixel-
transfer based methods first translate source images to target-
style with a GAN model (e.g. CycleGAN [48], StarGAN
[54]), then perform feature-transfer learning. As discussed in
the Section 1, such procedure may import unexpected low-
level characters of resolutions, backgrounds, and illuminations
into the target domain. Different from them, to avoid such
low-level noises, we first perform feature-transfer learning,
then do the pixel-transfer learning in a format of decoding.
We call the former as pre-pixel-transfer learning, and the
latter (ours) as post-pixel-transfer learning. To verify the
effectiveness of the post-pixel-transfer learning, we also report
the results of pre-pixel-transfer as contrast experiments. We
name the pre-pixel-transfer learning as "PT”. Experimental



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Market2Duke

Duke2Market

10

Fig. 4. Examples of satisfactory results. The first column is an query while the rest lists the ranking results (the yellow number represents its similarity)
based on our method. Green rectangles means correct matching and red ones are wrong.
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Fig. 5. Examples of unsatisfactory results. The first column is an query while the rest lists the ranking results (the yellow number represents its similarity)
based on our method. Green rectangles means correct matching and red ones are wrong.

results are shown in Table As we can see, in all cases,
replacing post-pixel-transfer learning ("P7”’) with pre-pixel-
transfer learning CPT”) significantly harm performance. For
Example, in market2duke setting, baseline + F'T + PT + F
perform worse than baseline + FT' + PT + F by 4% Rank-1
score.

Parameters Analysis. There are three hyper-parameters,
including M\ in Eq./Eq., Afear in Eq. and A70"
in Eq.(TT)/Eq.(T4). We carefully analyse their effects under
different values. The experimental results of are shown in Fig.
where the source and target datasets are DukeMTMC-relD
and Market-1501, respectively. As we can see, Ay is stable
to different values and reaches the best accuracy at 1.0, this
satisfies the conclusion in most Re-ID works [22]], [21]. )\j’c‘;st
and AJF" is robust when their values are smaller than 10 but
perform worse when larger than 10. Thus the two parameters
should be carefully searched. The results are consistent with
popular GAN works [54].

We note that on all the 4 settings including Duke2Market,

Market2Duke, Duke2MSMT and Market2MSMT, the values
of Aiyis /\?ZZt and AJ%" are unchanged, i.e., set to 1, 10 and 10,
respectively. Thus, our proposed method is relatively robust to
hyper-parameters.

Satisfactory & unsatisfactory results. In Fig. ] and [3]
we present some satisfactory and unsatisfactory results based
on our method, respectively. From Fig. i} we can see that
nearly all listing results (including wrong results) own sim-
ilar clothing styles and the same belongings with the query
image. It demonstrates that our proposed method can both
translate low-level information (color, illumination, view, etc)
and high-level information (identity). In Fig. [5] although most
listing results are wrong, their low-level information (color,
illumination, view, etc) is still translated well. The reason of
failure in translating identity information may be because (1)
the appearance of listing images is too similar with the query
to recognize them correctly and (2) there are some interference
factors like occlusion, similar backgrounds, etc.
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Fig. 6. Hyper-parameters analysis.

V. CONCLUSION

In this paper, we propose a novel idea for unsupervised
cross-dataset Re-ID which unifies pixel-transfer and feature
transfer learning by bilinear pooling. It performs translation
learning of low-level and high-level knowledge from source
domain to target domain. The source images’ styles are learned
and preserved in the pixel-transfer module while the identity-
discriminative features are achieved in the feature-transfer
module. These two kinds of domain translation information are
finally enhanced in the bilinear pooling layer. Our proposed
method is an end-to-end framework and simultaneously per-
forms above-mentioned operations via an adversary strategy
and Hadamard product. Extensive experiments on Market-
1501, DukeMTMC-ReID and MSMT17 datasets verify the
effectiveness of our method.
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