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The rich collection of annotated datasets piloted the robustness of deep learning techniques to effectuate
the implementation of diverse medical imaging tasks. Over 15% of deaths include children under age five
are caused by pneumonia globally. In this study, we describe our deep learning based approach for the
identification and localization of pneumonia in Chest X-rays (CXRs) images. Researchers usually employ
CXRs for the diagnostic imaging study. Several factors such as positioning of the patient and depth of
inspiration can change the appearance of the chest X-ray, complicating interpretation further. Our iden-
tification model (https://github.com/amitkumarj441/identify_pneumonia) is based on Mask-RCNN, a
deep neural network which incorporates global and local features for pixel-wise segmentation. Our
approach achieves robustness through critical modifications of the training process and a novel post-
processing step which merges bounding boxes from multiple models. The proposed identification model
achieves better performances evaluated on chest radiograph dataset which depict potential pneumonia
causes.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Pneumonia is one of the leading causes of death among children
and old age people around the world. It is an infection caused by a
virus, bacteria or other germs. Pneumonia results in inflammation
in lungs which can be life threatening if not diagnosed in time.
Chest X-ray is an important pneumonia diagnosis method world-
wide. However, an expert knowledge and experience is required
to read the X-ray images carefully. Therefore, the process of pneu-
monia detection by reading X-ray images can be time consuming
and less accurate. The reason is that several other medical condi-
tions i.e. lung cancer, excess fluid etc. can also show similar opac-
ities in images. Therefore, accurate reading of images is highly
desirable. The power of computing is world known and developing
an identification model for finding pneumonia causes in clinical
images can help in accurate and better understanding of the
X-ray images.

X-ray image analysis is considered as tedious and crucial tasks
for radiology experts. Therefore, researchers have proposed several
computer algorithms to analyze X-ray images [1,2]. Also, several
computer assisted diagnosis tools [3–5] have been developed to
provide an insight of X-ray images. However, these tools are not
able to provide sufficient information to support doctors in making
decisions [6]. Machine learning is a promising approach in the field
of artificial intelligence. A plenty of research works have been car-
ried out to investigate the chest and lung diseases using machine
learning. Vector quantization, regression neural networks has been
used to investigate chest disease [7]. In another study [8], chronic
pneumonia disease was analyzed and its diagnosis was imple-
mented using neural networks. Another study [9] used chest radio-
graphic images for the detection of lung diseases. They applied
histogram equalization for image pre-processing and further feed
forward neural network was used for classification. Although the
above mentioned studies have performed efficiently, however
lacks in terms of higher accuracy, computational time and error
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rate. Deep learning has already been proved an effective approach
in object detection and segmentation, image classification, natural
language processing etc. Further, deep learning has also shown its
potential in medical image analysis for object detection and seg-
mentation such as radiology image analysis in order to study
anatomical or pathological structures of human body [10–12].
Also, deep learning provided higher accuracy than traditional neu-
ral network architectures.

In the remainder of this article, we first review the literature
related to pneumonia identification in chest X-ray images in Sec-
tion 2 followed by proposed model architecture in Section 3 detail-
ing algorithm and training steps in different stages. We have
detailed our extensive analysis of RSNA dataset in Section 4 with
image augmentation steps including the result from cleaned data,
and evaluation metrics followed by evaluation result in Section 5 of
our proposed model as well as ensembles of our model. Finally, we
conclude our work in Section 6 along with future work.
1 Chest X-ray images are in DICOM format:https://en.wikipedia.org/wiki/DICOM
2. Literature survey

Roth et al. [13] demonstrated the power of deep convolutional
neural network (CNN) to detect the lymph node in clinical diagnos-
tic task and obtained drastic results even in the presence of low
contrast surrounding structures obtained from computer tomogra-
phy. In another study, Shin et al. [14] addressed the problems of
thoraco-abdominal lymph detection and interstitial lung disease
classification using deep CNN. They developed different CNN archi-
tectures and obtained promising results with 85 percent sensitivity
at three false positives per patient. Ronneburger et al. [15] devel-
oped a CNN approach with the use of data augmentation. They sug-
gested that even trained on small samples of image data obtained
from transmitted light microscopy; the developed model was able
to capture high accuracy. Jamaludin et al. [16] applied CNN archi-
tecture to analyze the data obtained from spinal lumber magnetic
resonance imaging (MRI). They developed an efficient CNN model
to generate radiological grading of spinal lumber MRIs.

All these studies have performed well on radiological data
except that the size of the data was restricted to few hundred sam-
ples of patients. Therefore, a detailed study is required to use the
power of deep learning over thousand samples of patients to
achieve the accurate and reliable predictions. Kallianos et al. [17]
presented a state of art review stating the importance of artificial
intelligence in chest X-ray image classification and analysis. Wang
et al. [18] addressed this issue and prepared a new database
ChestX-ray8 with 108,948 front view X-ray images of 32,717
unique patients. Each of the X-ray images could have multiple
labels. They used deep convolutional neural networks to validate
the results on this data and obtained promising results. They men-
tioned that chestX-ray8 database can be extended by including
more disease classes and would be useful for other research
studies.

Rajpurkar et al. [19] developed a 121 layer deep convolutional
layer network chestX-ray14 dataset. This dataset is publically
available with more than 0.1 million front view X-ray images with
14 disease labels. They mentioned that their algorithm is capable
to predict all 14 disease categories with high efficiency. Irvin
et al. [20] stated that large labeled dataset is the key to success
for prediction and classification tasks. They presented a huge data-
set that consists of 224,316 chest radiographic images of 65,240
patients. They named this dataset as CheXpert. Then they used
convolutional neural networks to assign labels to them based on
the probability assigned by model. Model used frontal and lateral
radiographs to output the probabilities of each observation. Fur-
ther, they released the dataset as a benchmark dataset. Besides
the availability of a large dataset, it is highly desirable that every
object in the image should be detected carefully and segmentation
of each instance should be done precisely. Therefore, a different
approach is required to handle both instance segmentation and
object detection. Such powerful methods are faster region based
CNN (F-RCNN) [21] and FCN (Fully Convolutional Network) [22].

Moreover, F-RCNN can be extended with an additional branch
for segmentation mask prediction on each region of interest along
with existing branches for classification task. This extended net-
work is called Mask R-CNN and it is better than F-RCNN in terms
of efficiency and accuracy. Kaiming He et al. [23] presented Mask
R-CNN approach for object instance segmentation. They compared
their results with best models from COCO 2016 [24,25]. Luc et al.
[26] extended their approach by introducing an instance level seg-
mentation by predicting convolutional features.
3. Proposed architecture

In this section, we formulate and explore the problem pipeline
followed by our model based on Mask-RCNN in detecting pneumo-
nia symptoms from chest X-ray images.1.

3.1. Problem settings

The problem consists of binary classification of chest X-rays on
three different classes of lung opacities such as opacity, no opacity
and not normal. The major issue is dissimilarity in quality X-rays in
terms of brightness, resolution and position region of interest. To
model such task, we describe our algorithm that can detect the
visual signal for pneumonia in medical chest radiographs, and out-
put either pneumonia positive or negative, and if positive it also
returns predicted bounding boxes around lung opacities.

3.2. Modeling

In this section, we describe our modeling approach based on
Mask-RCNN [23] which aims to identify lung opacity that are likely
to depict pneumonia. Mask-RCNN is a deep neural network devel-
oped to solve instance segmentation in particular. Initially, we
illustrate how we employed faster region based convolutional net-
work [21] with pixelwise instance segmentation [27] for classifica-
tion and localisation to build our model. We first input an image
from chest X-ray sample data which goes through ROIAlign classi-
fier extracting features from the input radiograph, and then F-
RCNN model which then instantiated for pixelwise segmentation
and makes a bounding box of the input image. It returns the pre-
dicted labels of image reported in Fig. 1. We use ResNet101 as a
backbone detector in Mask-RCNN model and also compared it by
replacing the detector with ResNet50 which is a convolutional
network.

In perspective of pneumonia identification, Mask-RCNN model
takes chest X-ray image as an input and predicts the bounding
boxes of the image, label, mask including classes. It extends the
algorithm of F-RCNN by adding a branch which induces binary
mask predicting whether the given image pixel contributes to
the given part of the object or not. Also, it is easy to train a Mask
R-CNN and it adds a small overhead in terms of running time
which is negligible. So, we may consider Mask R-CNN as an
advanced faster R-CNN. We trained a RetinaNet [28] model which
is a classic approach for object detection. However, the approach
does not work well in all scenarios especially in the case on non-
vertical/horizontal objects. With Mask R-CNN this issue can be
resolved. Our Mask-RCNN based model gives more accurate pixel-
wise semantic segmentation than faster-RCNN for pneumonia

https://en.wikipedia.org/wiki/DICOM


Fig. 1. Mask R-CNN based model for opacity identification and pixel-wise disease segmentation.

Table 1
List of parameters in post-processing stage.

A.K. Jaiswal et al. /Measurement 145 (2019) 511–518 513
prone region in lungs around the rectangular bounding boxes. For
instance, refer to the input image and prediction sample in Fig. 1.
Type of threshold Value

Maximum overlap [Phase 0] 0.05
Confidence [Phase 0] 0.94

Minimum average confidence [Phase 0] 0.65
Class probability [Phase 1] 0.175

Confidence [Phase 2] 0.975
Below threshold confidence [Phase 3] 0.69
3.3. Algorithm

Our algorithmic approach for identifying potential pneumonia
causes is devised by Faster-RCNN [21]. We also tried several other
object detection techniques such as You Look Only Once (YOLO3)
[29] and U-Net [15] image detection architectures but it fails to
produce better predictions, from our tests, we found that Mask-
RCNN performing better in prediction tasks. We implemented
the base network of Mask-RCNN pre-trained on COCO weights2

using typical residual convolutional neural network (i.e., ResNet50
and ResNet101 [30]) for extracting features of actual human lungs
and ROIAlign as a classifier and bounding box as a regressor. We per-
formed pixel-wise segmentation of lung opacity selected by ROI clas-
sifier which helps scaling during inferencing and losses. We used
multi-task loss [31] for training our model (identification and classi-
fication) and estimated hyperparameters based on a 10% stratified
sample from the validation set of the training data. We employed
stochastic gradient descent (SGD) with an initial learning rate of
0.00105 for training, the overall training time is 11.2 h for 20 epochs
with batch size and image size of 16 and 512 � 512. Initially, we
trained our model on positive images only followed by fine-tuning
the model on all images, in which the foreground IoU threshold sets
to 0.3. We also performed augmentation3 during the training pro-
cess. Our final prediction set is generated by post-processing fol-
lowed by ensemble of two trained models on the entire training
data. In every model, we generated unique predictions as our pri-
mary focus is on bounding boxes which ‘‘hits”, which was post-
processed, the parameter values are given in Table 1: The post-
processing step is performed in three phases in which the very initial
Phase 0 applies non-maximum suppression4 to fold prediction for 2
varied 5-fold assignments which takes three parameters as reported
in Table 1 which identifies maximum sustainable overlap, confidence
threshold and minimum average confidence followed by Phase 1 which
solicits classification probability to the output of phase 0 which
consist of a set containing patient ID and their corresponding
predictions. In Phase 2, we have the confidence threshold of our
model which adds high confidence outcomes from phase 1 to the
result of our identified set of pneumonia (from our identification
model). Finally, in Phase 3, we convert the Mask-RCNN confidence
to fitted class probability by taking maximum confidence for every
patient and then merge it with class predictions. We aggregate
2 https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rc-
nn_coco.h5.

3 The augmentation step discussed in later section.
4 https://github.com/jrosebr1/imutils/blob/master/imutils/object_detection.py.
the confidence score for each and every bounding boxes before the
post-processing stage using the following equation:

Ŝc ¼ 1
F

X

i

Sc;i ð1Þ

where Ŝc;i is the confidence score for every ith bounding box for the

cth set, F depicts a scaling factor and Ŝc is the ensemble of confi-
dence score for the cth set. The bounding box from the ensembling
of cth set is calculated by

P̂cl ¼ medianfPclg þ a:rcl ð2Þ
where Pcl denotes the group of pixel locations of the corner l (top-
right, top-left, bottom-right, or bottom-left) of bounding boxes for
each cth set, a depicts the scaling factor with value 0.1, rcl depicts

the standard deviation of Pcl, and P̂cl depicts pixel location of the
ensembled bounding box for corner l. We discard those ensembled
bounding boxes from the final prediction set which has a confi-
dence score less than 0.25.

3.4. Training

We employ the RSNA pneumonia dataset5 which is a subset of
NIH CXR14 dataset [18]. For identification of pneumonia task, we
have the following examples6 or features from the stage 1 and stage
2 dataset: In Table 2, we have less examples in Stage 1 in comparison
to Stage 2 dataset, though the exact number of lung opacity feature
in Stage 1 dataset is 8964, which is the total number of ground truth
bounding boxes, and 5659 is the total number of patients with pneu-
monia. Each of these patients has 1–4 ground-truth bounding boxes.
Similarly, in Stage 2 dataset we have 6012 patient which is caused by
pneumonia and a slightly greater number of lung opacity feature
which is 9555 than Stage 1 dataset.
5 The RSNA pneumonia dataset can be found athttps://www.kaggle.com/c/rsna-
pneumonia-detection-challenge/data.

6 Here examples represent the patients‘ chest examination during data collection
from expert team of radiographers
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Table 2
Features of RSNA dataset.

# Features Stage 1 Stage 2

Normal 8525 8851
Lung Opacity 5659/8964 6012/9555
Abnormal 11,500 11,821

Table 3
RSNA training and test image set.

# Images Stage 1 Stage 2

Train Set 25684 26684
Test Set 1000 3000
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Also, we give a brief overview on training and test data of RSNA
dataset in these two stages reported in Table 3: The detailed infor-
mation about the difference between number of images in Stage 1
and 2 is given in later section below.

We have examined the training data classifying the positive and
negative features among patients‘ of different age reported in
Fig. 2, whereas the various feature class among patients‘ of differ-
ent age group reported in Fig. 3.
4. Experimental evaluation

4.1. Data preparation and augmentation

Dataset: We used a large publicly available chest radiographs
dataset from RSNA7 which annotated 30,000 exams from the origi-
nal 112,000 chest X-ray dataset [18] to identify instances of potential
pneumonia as a training set and STR8 approximately generated con-
sensus annotations for 4500 chest X-rays to be used as test data. The
annotated collection contains participants ground truth which fol-
lows training our algorithm for evaluation. The sets containing
30,000 samples is actually made up of 15,000 samples with pneumo-
nia related labels such as ‘Pneumonia’, ‘Consolidation’, and ‘Infiltra-
tion’, where 7500 samples are chosen randomly with ‘No Findings’
label, and another randomly selected 7500 samples without the
pneumonia related labels and ‘No Findings’ label. They created a
unique identifier for each of those 30,000 samples.

Annotation: Samples were annotated using a proprietary web
based annotation system and permanently inaccessible to the
other peoples’ annotations. Every radiologists practitioners who
took part in training initially executed on the similar set of 50
exemplary chest X-rays in a hidden manner, and then were visibly
annotated to the other practitioners for the similar 50 chest X-rays
for evaluations, as it enable for questions such as does an X-ray
with healed rib fractures enumerate and no enumeration as ‘Nor-
mal’ and for preliminary calibration. The final sets of label com-
prises of as given in Table 4: There are ‘Question’ labels to
suggest questions which will be answered by a chest radiologist
practitioner. Overall coequal distribution of 30,000 human lungs
is annotated by six radiologists experts to assess whether the col-
lected images of lungs opacities equivocal for pneumonia with
their analogical bounding box to set forth the status. Also, other
twelve experts from STR collaborated in annotating fairly 4500
human lungs. Out of 4500 triple read conditions, we divided these
chest X-rays into three sets containing 1500 human lungs in train-
ing set, 1000 in test set (initial stage) and rest 2000 in test set at
final stage. However, the test sets is double checked by five radiol-
ogist practitioners including six other radiologists from the first
group.

Primary consideration: We discuss the adjudicate during the
data collection for such sophisticated task. A bounding box is
assessed as isolated in multi-read case provided that it does not
coincide with the bounding boxes of the other two readers i.e.,
these two readers fails to flag that particular area of the image as
being unsure for pneumonia. Whenever the adjudicator concurs
7 Radiological Society of North America.
8 Society of Thoracic Radiology.
that the isolated bounding box is valid then the box will endures
a positive minority belief, in other cases it will be discarded. Ini-
tially, they assigned a confidence score to the bounding boxes.
Also, a low confidence bounding boxes was discarded and high/
intermediate boxes was aggregated into a group of appropriate
pneumonia. Given a low probability based bounding box, they dis-
card the box and check whether the labeling is abnormal or no lung
opacity. The opposed bounding boxes was adjudicated by one of
two thoracic radiology practitioners in multi-read cases which
does not consent. Also, the practitioners found that the annotations
of all three readers in adjudicated case is more than 15%. They used
intersection for the rest of the bounding boxes in case of at least
50% coincide by one of the bounding boxes, this step has ample
effect in discarding few pixel data for multiple readers including
positive pixels. They used 1500 read cases out of the 4500 triple
cases into the training set to average out few probable distinction
among single and multi-read cases. Rest 3000 triple read cases
allocated to the test set. The majority vote is used to distinguish
weak labels. The radiologists followed the below requirement dur-
ing data collection:

1. Bounding box (Lung Opacity): A patient’s chest radiograph
includes finding of fever and cough for potential signs of
pneumonia.

2. They made few conjectures during the sabbatical of lateral
radiography, serial examination and clinical information.

3. Based on Fleischner’s [32] work, they considered every region
which was more opaque than the neighbouring area.

4. They also excluded area such as nodule(s), evident mass(es),
linear atelectasis and lobar collapse.

Data augmentation: We performed augmentation on lung opac-
ities and images data with random scaling including shifting in
coordinate space ððx1; y1Þ; ðx2; y2ÞÞ as well as increasing/decreasing
brightness and contrast including blurring with Gaussian blur
under batches. Following these image augmentation, we found
images after augmentation reported in Fig. 4.

Considering the outcome in Figs. 2 and 3 signifies status of
patient class and labels from the X-ray images, as we see a highly
imbalanced dataset. The imbalance of training and test dataset
among too many negatives and too few positives generates a crit-
ical issue, as we want high recall but the model could predict all
negatives to attain high accuracy and the recall significantly
undergo. In this case, it is unsure whether or not the present imbal-
ance is acceptable or not. We test whether balancing the class dis-
tribution would yield any improvement in this case. To do this, we
have trained our model on two training data sets, one balanced and
the other not. We then create the balanced dataset by augmenting
more images to the negative (0) class. We discussed previously the
augmentation steps which includes flipping, rotating, scaling, crop-
ping, translating, and noise adding. Introducing the images in the
current negative class can possibly create radically new feature
that does not exist in the other class. For example, if we choose
to flip every negative-class image, then we have in the negative
class a set of images that have the right and left parts of the bodies
switched while the other class does not have this feature. This is
not desirable because, the network may learn unnecessary (and
incorrect) features such as the image with the left part of the body
being to a certain side is more likely to exhibit non-pneumonia. So



Fig. 2. Positive and negative features among patients’ of different age group.

Fig. 3. Feature class of patients’ among different age group.

Table 4
List of labels.

Probability Opacity No opacity Abnormal

High Yes No No
Intermediate Yes No No
Moderate Yes No No
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we scaled (cropping a little then resizing to the original size) the
images.

We also classify the distribution of positional view features
which is a radiographic view allied with the patient position given
in training and test data as in Table 5:

Data cleaning: We have performed an extensive data cleaning
on Stage 2 dataset and have explored the class probability ranking
among males and females which is reported in Fig. 5 this shows
Fig. 4. Augmentation on
that there are more chest X-ray images of males than females, both
genders have the most classes of ‘‘No Lung Opacity/Not Normal”,
however other than this fact the men are more likely to have a
class of ‘‘Lung Opacity” where as women are by proportion less
likely. This clearly explains about the class probability ranking
among the men and women.
4.2. Performance measures

We employ the mean of the intersection over union (IoU) of
pairing ground truth bounding boxes and prediction at varied
thresholds. The IoU can be computed from the paired threshold
which is the region of the predicted bounding boxes and ground-
truth bounding boxes as an evaluation metric for pneumonia iden-
tification task. It follows the below formula for IoU:
chest X-ray images.



Table 5
Distribution of positional features in RSNA dataset.

Positional feature Stage 1 Stage 2

Train Set Test Set Train Set Test Set

Anterior/Posterior 20714 468 12173 1382
Posterior/Anterior 15161 532 14511 1618

Fig. 5. Distribution of patient age and sex.
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IoUregionðBpredicted;Bground�truthÞ ¼ Bpredicted
T
Bground�truth

Bpredicted
S
Bground�truth

ð3Þ

The IoU determines a true-positive during pairing of predicted
object with ground-truth object above the threshold which ranges
from 0.4 to 0.75 at a step size of 0.05 to classify ‘‘misses” and ‘‘hits”.9

Pairing among predicted bounding boxes and ground-truth bound-
ing boxes is assessed in descending order of the predictions and
strictly injective which is based on their confidence levels.

Given any threshold value, the mean threshold value (MTV)
over the outcomes for a particular threshold can be computed fol-
lowing the counts of true positives ðcTPÞ, false negatives ðcFNÞ, and
false positives ðcFPÞ

MTVðtÞ ¼ cTPðtÞ
cTPðtÞ þ cFPðtÞ þ cFNðtÞ

ð4Þ

Also, we compute mean score (MS) for every image over all thresh-
old values:

MSi ¼ 1
Thresholdj j

X

t

MTVðtÞ ð5Þ

Therefore, we can compute the mean score for the dataset as
follows:
9 A predicted box hits when it reaches at a threshold of 0.5 provided its IoU with a
ground-truth box is greater than 0.5.
MSdataset ¼ 1
Imagej j

XImage

i

MSi ð6Þ

where Image in the dataset can be either a predicted bounding box
or ground-truth bounding box.

5. Evaluation results

We report our prediction result in this section followed by
results from ensemble model.

We perform ensembling in Stage 2 due to labelled dataset,
whereas the dataset in Stage 1 was highly imbalanced. The vari-
ance in the dataset is due to radiologists are overlooked with read-
ing high volumes of images every shift. We have discussed this in
earlier section of this article. In Fig. 6, we overlay the probabilities
of ground truth labels to check whether it is flipped or not. This
also shows the successful predictions depicting inconsistency
between ground-truth and prediction bounding boxes. We trained
our proposed model in Stage 2 on NVIDIA Tesla P100 GPU and
Tesla K80 in Stage 1, which also depicts that one needs an efficient
computing resources to model such task on highly imbalanced
dataset.

The prediction outcome of our model at given threshold is
reported in Table 6, in which the best prediction set of bounding
boxes and ground-truth boxes results in Stage 2. Also, the pre-
dicted sample set depicting pneumonia showing the position



Fig. 6. The results from stage 2 dataset. The probability overlaid on few images which includes all patient classes and labels. Green, orange, blue and red overlays shows
predictions and ground truth labels, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 6
Result: prediction at given threshold.

Model Threshold Stage 1 Stage 2

Mask-RCNN (ResNet50) 0.30 0.098189 0.183720
Mask-RCNN (ResNet101) 0.97 0.100155 0.199352

Table 7
Ensemble model results.

Model Stage 2

Mask-RCNN (ResNet50 + ResNet101) 0.218051
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(point) and the bounding box for each of the different image types
is reported in Fig. 6. The position (point) and the bounding box for
each of the different image types are reported in The training loss
of our proposed model is reported in Fig. 7.
5.1. Ensembles

Our proposed approach, as illustrated in the beginning of this
section, implies a typical ensemble model after post-processing
step which is then employed to obtain prediction set of patients’
having pneumonia. We ensembled our Mask-RCNN based model
developed on ResNet50 and ResNet101 and the result is reported
in Table 7.
6. Conclusion and future work

In this work, we have presented our approach for identifying
pneumonia and understanding how the lung image size plays an
important role for the model performance. We found that the dis-
tinction is quite subtle for images among presence or absence of
pneumonia, large image can be more beneficial for deeper informa-
tion. However, the computation cost also burden exponentially
when dealing with large image. Our proposed architecture with
regional context, such as Mask-RCNN, supplied extra context for
generating accurate results. Also, using thresholds in background
while training tuned our network to perform well in the this task.
Fig. 7. Training loss: identificatio
With the usage of image augmentation, dropout and L2 regulariza-
tion prevented the overfitting, but are obtained something weaker
results on the training set with respect to the test. Our model can
be improved by adding new layers, but this would introduce even
more hyperparameters that should be adjusted. We intend to
extend our model architecture in other areas of medical imaging
with the usage of deep learning and computer vision techniques.
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